版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)與式數(shù)與式考點(diǎn)一實(shí)數(shù)的有關(guān)概念考點(diǎn)一實(shí)數(shù)的有關(guān)概念1 1數(shù)軸數(shù)軸規(guī)定了規(guī)定了_、 _ _ 、 _的直線,叫做的直線,叫做數(shù)軸數(shù)軸 _和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的2 2相反數(shù)相反數(shù)(1)(1)實(shí)數(shù)實(shí)數(shù)a a的相反數(shù)為的相反數(shù)為_(kāi) _ ;(2)(2)a a與與b b互為相反數(shù)互為相反數(shù) _ _ ;(3)(3)相反數(shù)的幾何意義:在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)相反數(shù)的幾何意義:在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)位于原點(diǎn)的兩側(cè),且到原點(diǎn)的距離位于原點(diǎn)的兩側(cè),且到原點(diǎn)的距離_這兩個(gè)點(diǎn)關(guān)于這兩個(gè)點(diǎn)關(guān)于_對(duì)稱對(duì)稱原點(diǎn)原點(diǎn)正方向正方向單位長(zhǎng)度單位長(zhǎng)度實(shí)數(shù)實(shí)數(shù)aab0相等相等原點(diǎn)原點(diǎn)3 3倒數(shù)倒數(shù)(
2、1)(1)實(shí)數(shù)實(shí)數(shù)a a的倒數(shù)是的倒數(shù)是_,其中,其中a a 0 0;(2)(2)a a和和b b互為倒數(shù)互為倒數(shù)_._.4 4絕對(duì)值絕對(duì)值在數(shù)軸上表示一個(gè)數(shù)的點(diǎn)離開(kāi)在數(shù)軸上表示一個(gè)數(shù)的點(diǎn)離開(kāi)_的距離叫做這個(gè)數(shù)的的距離叫做這個(gè)數(shù)的絕對(duì)值即一個(gè)正數(shù)的絕對(duì)值是它絕對(duì)值即一個(gè)正數(shù)的絕對(duì)值是它 ,0 0的絕對(duì)值的絕對(duì)值是是 ,負(fù)數(shù)的絕對(duì)值是它的,負(fù)數(shù)的絕對(duì)值是它的_._.ab1原點(diǎn)原點(diǎn)本身本身相反數(shù)相反數(shù)0溫馨提示:溫馨提示:(1)絕對(duì)值是絕對(duì)值是a(a0)的數(shù)有兩個(gè),它們互為相反數(shù),即為的數(shù)有兩個(gè),它們互為相反數(shù),即為a.(2)絕對(duì)值相等的兩個(gè)數(shù)相等或互為相反數(shù)絕對(duì)值相等的兩個(gè)數(shù)相等或互為相反數(shù).即
3、:若即:若|a|=|b|,則則a=b或或a+b=0.(3)任意實(shí)數(shù)的絕對(duì)值都是非負(fù)數(shù),即任意實(shí)數(shù)的絕對(duì)值都是非負(fù)數(shù),即|a|0.(4)去掉絕對(duì)值符號(hào)進(jìn)行化簡(jiǎn)運(yùn)算時(shí),關(guān)鍵是判斷絕對(duì)值符號(hào)里面的去掉絕對(duì)值符號(hào)進(jìn)行化簡(jiǎn)運(yùn)算時(shí),關(guān)鍵是判斷絕對(duì)值符號(hào)里面的代數(shù)式的正負(fù)代數(shù)式的正負(fù).考點(diǎn)二考點(diǎn)二 實(shí)數(shù)的分類(lèi)實(shí)數(shù)的分類(lèi)1 1按定義分類(lèi)按定義分類(lèi)2 2按正負(fù)分類(lèi)按正負(fù)分類(lèi)無(wú)理數(shù)包括:無(wú)理數(shù)包括:(1)(2)(3)考點(diǎn)三考點(diǎn)三 平方根、算術(shù)平方根、立方根平方根、算術(shù)平方根、立方根溫馨提示溫馨提示: :在應(yīng)用在應(yīng)用x x2 2=a=a時(shí),一定不要忘記時(shí),一定不要忘記a0a0這一條件這一條件. .注意算術(shù)平方根與平
4、方注意算術(shù)平方根與平方根的區(qū)別與聯(lián)系根的區(qū)別與聯(lián)系. .如如1 1的平方根是的平方根是1 1,而,而1 1的算術(shù)平方根是的算術(shù)平方根是1.1.平方根平方根正的平方根正的平方根互為相反數(shù)互為相反數(shù)考點(diǎn)四考點(diǎn)四 科學(xué)記數(shù)法、近似數(shù)與有效數(shù)字科學(xué)記數(shù)法、近似數(shù)與有效數(shù)字把一個(gè)數(shù)把一個(gè)數(shù)N N表示成表示成a a1010n n(1|(1|a a| |1010,n n 是整數(shù)是整數(shù)) )的形式叫科學(xué)記數(shù)的形式叫科學(xué)記數(shù)法當(dāng)法當(dāng)| |N N|1|1時(shí),時(shí),n n 等于原數(shù)等于原數(shù)N N 的整數(shù)位數(shù)減的整數(shù)位數(shù)減1 1;當(dāng);當(dāng)| |N N| |1 1且且N N0 0 時(shí),時(shí),n n 是一個(gè)負(fù)整數(shù),它的絕對(duì)值等
5、于原數(shù)中左起第一個(gè)非零數(shù)字前零的個(gè)數(shù)是一個(gè)負(fù)整數(shù),它的絕對(duì)值等于原數(shù)中左起第一個(gè)非零數(shù)字前零的個(gè)數(shù)( (含整數(shù)位上的零含整數(shù)位上的零) )2 2近似數(shù)與有效數(shù)字近似數(shù)與有效數(shù)字一個(gè)近似數(shù),四舍五入到哪一位,就說(shuō)這個(gè)近似數(shù)精確到哪一位,這一個(gè)近似數(shù),四舍五入到哪一位,就說(shuō)這個(gè)近似數(shù)精確到哪一位,這時(shí)從左邊第時(shí)從左邊第 個(gè)非零數(shù)字起,到末位數(shù)字為止,所有的數(shù)字都叫做這個(gè)非零數(shù)字起,到末位數(shù)字為止,所有的數(shù)字都叫做這個(gè)近似數(shù)的有效數(shù)字個(gè)近似數(shù)的有效數(shù)字 一考點(diǎn)一考點(diǎn)一 實(shí)數(shù)的運(yùn)算實(shí)數(shù)的運(yùn)算在實(shí)數(shù)范圍內(nèi)運(yùn)算順序是:先算在實(shí)數(shù)范圍內(nèi)運(yùn)算順序是:先算_ _,再算,再算_,最,最后算后算_,有括號(hào)的先算括號(hào)
6、內(nèi)的,有括號(hào)的先算括號(hào)內(nèi)的. .同一級(jí)運(yùn)算,從左到右依次進(jìn)行計(jì)算同一級(jí)運(yùn)算,從左到右依次進(jìn)行計(jì)算. .考考點(diǎn)二點(diǎn)二 零指數(shù)、負(fù)整數(shù)指數(shù)冪零指數(shù)、負(fù)整數(shù)指數(shù)冪考點(diǎn)三考點(diǎn)三 實(shí)數(shù)大小比較實(shí)數(shù)大小比較1.1.在數(shù)軸上表示兩個(gè)數(shù)的點(diǎn),右邊的點(diǎn)表示的數(shù)總比左邊的點(diǎn)表示的在數(shù)軸上表示兩個(gè)數(shù)的點(diǎn),右邊的點(diǎn)表示的數(shù)總比左邊的點(diǎn)表示的數(shù)數(shù)_;_;兩個(gè)負(fù)數(shù)比較,絕對(duì)值大的反而兩個(gè)負(fù)數(shù)比較,絕對(duì)值大的反而_._.2.2.設(shè)設(shè)a a、b b是任意兩個(gè)數(shù),若是任意兩個(gè)數(shù),若a-ba-b0 0,則,則a_ba_b;若;若a-b=0a-b=0,則,則a_ba_b;若若a-ba-b0 0,則,則a_b.a_b.乘方(或開(kāi)方)
7、乘方(或開(kāi)方)乘除乘除加減加減1大大小小=. .三個(gè)重要的非負(fù)數(shù)三個(gè)重要的非負(fù)數(shù) a a(a0a0)、)、|a|a|、a a2 2. .考點(diǎn)一考點(diǎn)一 整式的有關(guān)概念整式的有關(guān)概念1 1單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式單項(xiàng)式是指用乘號(hào)把數(shù)和字母連接而單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式單項(xiàng)式是指用乘號(hào)把數(shù)和字母連接而成的式子,而多項(xiàng)式是指幾個(gè)單項(xiàng)式的成的式子,而多項(xiàng)式是指幾個(gè)單項(xiàng)式的_. .2 2單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的 ;單項(xiàng)式中所有字母的;單項(xiàng)式中所有字母的_叫做單項(xiàng)式的次數(shù)叫做單項(xiàng)式的次數(shù)3 3多項(xiàng)式中,每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫多項(xiàng)式中,每一個(gè)單項(xiàng)式叫做多
8、項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng);多項(xiàng)式中次數(shù)做常數(shù)項(xiàng);多項(xiàng)式中次數(shù) 的次數(shù)就是這個(gè)多項(xiàng)式的次數(shù)的次數(shù)就是這個(gè)多項(xiàng)式的次數(shù)和和系數(shù)系數(shù)指數(shù)和指數(shù)和最高項(xiàng)最高項(xiàng)考點(diǎn)二考點(diǎn)二 整式的運(yùn)算整式的運(yùn)算1.1.整式的加減整式的加減(1 1)同類(lèi)項(xiàng)與合并同類(lèi)項(xiàng))同類(lèi)項(xiàng)與合并同類(lèi)項(xiàng)所含的所含的_相同,并且相同,并且_也分別相同的單項(xiàng)式叫也分別相同的單項(xiàng)式叫做同類(lèi)項(xiàng)做同類(lèi)項(xiàng). .把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng),合并的法則把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng),合并的法則是系數(shù)相加,所得的結(jié)果作為合并后的系數(shù),字母和字母的是系數(shù)相加,所得的結(jié)果作為合并后的系數(shù),字母和字母的_不變不變. .(
9、2 2)去括號(hào)與添括號(hào))去括號(hào)與添括號(hào)括號(hào)前是括號(hào)前是“+”+”號(hào),去掉括號(hào)和它前面的號(hào),去掉括號(hào)和它前面的“+”+”號(hào),括號(hào)里的各項(xiàng)都號(hào),括號(hào)里的各項(xiàng)都不改變符號(hào);括號(hào)前是不改變符號(hào);括號(hào)前是“-”-”號(hào),去掉括號(hào)和它前面的號(hào),去掉括號(hào)和它前面的“-”-”號(hào),括號(hào)里的號(hào),括號(hào)里的各項(xiàng)各項(xiàng)_ _._ _.字母字母相同字母的指數(shù)相同字母的指數(shù)指數(shù)指數(shù)都改變符號(hào)都改變符號(hào)括號(hào)前是括號(hào)前是“+”+”號(hào),括到括號(hào)里的各項(xiàng)都不改變符號(hào);括號(hào)前是號(hào),括到括號(hào)里的各項(xiàng)都不改變符號(hào);括號(hào)前是“-”-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào). .(3 3)整式加減的實(shí)質(zhì)是合并同類(lèi)項(xiàng))整式加
10、減的實(shí)質(zhì)是合并同類(lèi)項(xiàng). .溫馨提示:溫馨提示:在進(jìn)行整式加減運(yùn)算時(shí)在進(jìn)行整式加減運(yùn)算時(shí), ,如果遇到括號(hào),應(yīng)根據(jù)去括號(hào)法則,先去括如果遇到括號(hào),應(yīng)根據(jù)去括號(hào)法則,先去括號(hào),再合并同類(lèi)項(xiàng)號(hào),再合并同類(lèi)項(xiàng). .當(dāng)括號(hào)前是負(fù)號(hào),去括號(hào)時(shí),括號(hào)內(nèi)每一項(xiàng)當(dāng)括號(hào)前是負(fù)號(hào),去括號(hào)時(shí),括號(hào)內(nèi)每一項(xiàng)_._.2.2.冪的運(yùn)算冪的運(yùn)算同底數(shù)冪相乘同底數(shù)冪相乘, ,底數(shù)不變底數(shù)不變, ,指數(shù)相加指數(shù)相加, ,即即a am maan n=_=_(m m、n n都是整數(shù))都是整數(shù))冪的乘方冪的乘方, ,底數(shù)不變底數(shù)不變, ,指數(shù)相乘指數(shù)相乘, ,即即(a am m)n n=_=_(m m、n n都是整數(shù))都是整數(shù)). .
11、積的乘方,等于把積的每一個(gè)因式分別乘方,再把所有的冪相乘,積的乘方,等于把積的每一個(gè)因式分別乘方,再把所有的冪相乘,am+namn都要變號(hào)都要變號(hào)即即(abab)n n=a=an nb bn n(n n為整數(shù))為整數(shù)). .同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即a am ma an n=_=_(a0a0,m m、n n都為都為整數(shù))整數(shù)). .3.3.整式的乘法整式的乘法單項(xiàng)式與單項(xiàng)式相乘,單項(xiàng)式與單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式,只在把系數(shù)、同底數(shù)冪分別相乘,作為積的因式,只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式一個(gè)單項(xiàng)式
12、里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式. .單項(xiàng)式與多項(xiàng)式相乘,單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,即把所得的積相加,即m m(a+b+ca+b+c)=_.=_.多項(xiàng)式與多項(xiàng)式相乘,多項(xiàng)式與多項(xiàng)式相乘,先用多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),先用多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加,即(再把所得的積相加,即(m+nm+n)()(a+ba+b)=ma+mb+na+nb.=ma+mb+na+nb.am-nma+mb+mc4.4.整式的除法整式的除法單項(xiàng)式除以單項(xiàng)式,把單項(xiàng)式除以單項(xiàng)
13、式,把_分別相除,作為商的因式,分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式. .多項(xiàng)式除以單項(xiàng)式,把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,然后把多項(xiàng)式除以單項(xiàng)式,把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,然后把所得的商相加所得的商相加. .5.5.乘法公式乘法公式(1 1)平方差公式)平方差公式兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差,即(兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差,即(a+ba+b)(a-ba-b)=_.=_.(2 2)完全平方公式)完全平方公式系數(shù)、同底數(shù)冪系數(shù)、同底數(shù)
14、冪a2-b2兩數(shù)和(或差)的平方,等于它們的平方和加上(或減去)它們的積兩數(shù)和(或差)的平方,等于它們的平方和加上(或減去)它們的積的的2 2倍,即(倍,即(a ab)b)2 2=_ _.=_ _.考點(diǎn)三考點(diǎn)三 因式分解因式分解1.1.因式分解的定義及與整式乘法的關(guān)系因式分解的定義及與整式乘法的關(guān)系(1)_,(1)_,這種運(yùn)算就是因式分解這種運(yùn)算就是因式分解. .(2)(2)因式分解與整式乘法是互逆運(yùn)算因式分解與整式乘法是互逆運(yùn)算2 2因式分解的常用方法因式分解的常用方法(1)(1)提公因式法提公因式法(2)(2)運(yùn)用公式法(運(yùn)用公式法(3 3)十字相乘)十字相乘a 2ab+b2把一個(gè)多項(xiàng)式化
15、為幾個(gè)整式的積的形式把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式23 3因式分解的一般步驟因式分解的一般步驟(1)(1)一提:如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;一提:如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;(2)(2)二用:如果各項(xiàng)沒(méi)有公因式,那么可以嘗試運(yùn)用公式法來(lái)分解;二用:如果各項(xiàng)沒(méi)有公因式,那么可以嘗試運(yùn)用公式法來(lái)分解;(3)(3)三查:分解因式,必須進(jìn)行到每一個(gè)多項(xiàng)式都不能再分解為止三查:分解因式,必須進(jìn)行到每一個(gè)多項(xiàng)式都不能再分解為止考點(diǎn)一考點(diǎn)一 分式分式形如形如 (A A、B B是整式,且是整式,且B B中含有字母,中含有字母,B_B_)的式子叫做分式)的式子叫做分式. .(1
16、1)分式有無(wú)意義:)分式有無(wú)意義:B=0B=0時(shí),分式無(wú)意義;時(shí),分式無(wú)意義;B0B0時(shí),分式有意義時(shí),分式有意義. .(2 2)分式值為)分式值為0 0:A=0A=0且且B0B0時(shí),分式的值為時(shí),分式的值為0.0.考點(diǎn)二考點(diǎn)二 分式的基本性質(zhì)分式的基本性質(zhì)分式的分子與分母都乘以(或除以)同一個(gè)分式的分子與分母都乘以(或除以)同一個(gè)_的整式,分式的值不的整式,分式的值不變變. .溫馨提示:溫馨提示:1.1.若原分式的分子(或分母)是多項(xiàng)式,運(yùn)用分式基本性質(zhì)時(shí),要先把分式的分子若原分式的分子(或分母)是多項(xiàng)式,運(yùn)用分式基本性質(zhì)時(shí),要先把分式的分子(或分母)用括號(hào)括上,再乘以(或除以)整式(或分母
17、)用括號(hào)括上,再乘以(或除以)整式. .2.2.應(yīng)用分式基本性質(zhì)時(shí),要深刻理解應(yīng)用分式基本性質(zhì)時(shí),要深刻理解“都都”與與“同同”這兩個(gè)字的含義,避免犯只乘分這兩個(gè)字的含義,避免犯只乘分子或分母一項(xiàng)的錯(cuò)誤子或分母一項(xiàng)的錯(cuò)誤. .0不等于零不等于零考點(diǎn)三考點(diǎn)三 分式的運(yùn)算分式的運(yùn)算4分式的混合運(yùn)算分式的混合運(yùn)算考點(diǎn)四考點(diǎn)四 分式求值分式求值分式的求值方法很多,主要有三種:分式的求值方法很多,主要有三種:(1)(1)先化簡(jiǎn),后求值;(先化簡(jiǎn),后求值;(2 2)由值)由值的形式直接轉(zhuǎn)化成所求的代數(shù)式的值;(的形式直接轉(zhuǎn)化成所求的代數(shù)式的值;(3 3)式中字母表示的數(shù)未明確告)式中字母表示的數(shù)未明確告知
18、,而是隱含在方程等題設(shè)條件中知,而是隱含在方程等題設(shè)條件中. .解這類(lèi)題,一方面從方程中求出未知解這類(lèi)題,一方面從方程中求出未知數(shù)或未知代數(shù)式的值;另一方面把所求代數(shù)式化簡(jiǎn)數(shù)或未知代數(shù)式的值;另一方面把所求代數(shù)式化簡(jiǎn). .只有雙管齊下,才能只有雙管齊下,才能獲得簡(jiǎn)易的解法獲得簡(jiǎn)易的解法. .考點(diǎn)一考點(diǎn)一 二次根式二次根式考點(diǎn)二考點(diǎn)二 最簡(jiǎn)二次根式最簡(jiǎn)二次根式最簡(jiǎn)二次根式必須同時(shí)滿足條件:最簡(jiǎn)二次根式必須同時(shí)滿足條件:(1 1)被開(kāi)方數(shù)的因數(shù)是)被開(kāi)方數(shù)的因數(shù)是_,因式是整式;,因式是整式;(2 2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式. .0正整數(shù)正整數(shù)考
19、點(diǎn)三考點(diǎn)三 同類(lèi)二次根式同類(lèi)二次根式幾個(gè)二次根式化成幾個(gè)二次根式化成_后,如果后,如果_相同,這幾個(gè)相同,這幾個(gè)二次根式就叫做同類(lèi)二次根式二次根式就叫做同類(lèi)二次根式. .溫馨提示:溫馨提示:判斷幾個(gè)二次根式是否是同類(lèi)二次根式,必須先化成最簡(jiǎn)二次根式后判斷幾個(gè)二次根式是否是同類(lèi)二次根式,必須先化成最簡(jiǎn)二次根式后再判斷,否則很容易出錯(cuò)再判斷,否則很容易出錯(cuò). .考點(diǎn)四考點(diǎn)四 二次根式的性質(zhì)二次根式的性質(zhì)最簡(jiǎn)二次根式最簡(jiǎn)二次根式被開(kāi)方數(shù)被開(kāi)方數(shù)非負(fù)非負(fù)a考點(diǎn)五考點(diǎn)五 二次根式的運(yùn)算二次根式的運(yùn)算1 1二次根式的加減法二次根式的加減法先將各根式化為先將各根式化為_(kāi),然后合并同類(lèi)二次根式,然后合并同類(lèi)二
20、次根式0最簡(jiǎn)二次根式最簡(jiǎn)二次根式最簡(jiǎn)二次根式最簡(jiǎn)二次根式0方程(組)與不等方程(組)與不等式(組)式(組)考點(diǎn)一考點(diǎn)一 等式及方程的有關(guān)概念等式及方程的有關(guān)概念1.1.等式及其性質(zhì)等式及其性質(zhì)溫馨提示:溫馨提示:在等式兩邊都除以同一個(gè)代數(shù)式時(shí),一定要保證這個(gè)代數(shù)式的值在等式兩邊都除以同一個(gè)代數(shù)式時(shí),一定要保證這個(gè)代數(shù)式的值_. .2.2.方程的有關(guān)概念方程的有關(guān)概念不為零不為零考點(diǎn)二一元一次方程考點(diǎn)二一元一次方程1 1一元一次方程一元一次方程2 2解一元一次方程的一般步驟解一元一次方程的一般步驟(1)(1)去分母;去分母;(2)(2)去括號(hào);去括號(hào);(3)(3)移項(xiàng);移項(xiàng);(4)(4)合并同類(lèi)
21、項(xiàng);合并同類(lèi)項(xiàng);(5)(5)系數(shù)化為系數(shù)化為1.1.考點(diǎn)三考點(diǎn)三 二元一次方程組及解法二元一次方程組及解法考點(diǎn)四列方程(組)解應(yīng)用題考點(diǎn)四列方程(組)解應(yīng)用題1.1.列方程(組)解應(yīng)用題的一般步驟列方程(組)解應(yīng)用題的一般步驟(1 1)把握題意,搞清楚條件是什么,求什么;)把握題意,搞清楚條件是什么,求什么;(2 2)設(shè)未知數(shù))設(shè)未知數(shù); ;(3 3)找出能夠包含未知數(shù)的等量關(guān)系(一般情況下設(shè)幾個(gè)未知數(shù),)找出能夠包含未知數(shù)的等量關(guān)系(一般情況下設(shè)幾個(gè)未知數(shù),就找?guī)讉€(gè)等量關(guān)系);就找?guī)讉€(gè)等量關(guān)系);(4 4)列出方程(組);)列出方程(組);(5 5)求出方程(組)的解(注意排除增根);)求出
22、方程(組)的解(注意排除增根);(6 6)檢驗(yàn)(看是否符合題意);)檢驗(yàn)(看是否符合題意);(7 7)寫(xiě)出答案(包括單位名稱)寫(xiě)出答案(包括單位名稱). .2.2.列方程(組)解應(yīng)用題的關(guān)鍵是:列方程(組)解應(yīng)用題的關(guān)鍵是: . .確定等量關(guān)系確定等量關(guān)系考點(diǎn)一考點(diǎn)一 一元二次方程的定義一元二次方程的定義在整式方程中,只含有在整式方程中,只含有_個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的最高次數(shù)個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的最高次數(shù)是是_,這樣的整式方程叫一元二次方程,一元二次方程的標(biāo)準(zhǔn)形式是,這樣的整式方程叫一元二次方程,一元二次方程的標(biāo)準(zhǔn)形式是_. .考點(diǎn)二考點(diǎn)二 一元二次方程的常用解法一元二次方程的常用解法
23、一一2ax2bxc0(a0)分式方程 驗(yàn)根考點(diǎn)二考點(diǎn)二 與增根有關(guān)的問(wèn)題與增根有關(guān)的問(wèn)題1 1分式方程的增根必須同時(shí)滿足兩個(gè)條件分式方程的增根必須同時(shí)滿足兩個(gè)條件(1)_(1)_;(2)_.(2)_.2 2增根在含參數(shù)的分式方程中的應(yīng)用增根在含參數(shù)的分式方程中的應(yīng)用由增根求參數(shù)的值解答思路為:由增根求參數(shù)的值解答思路為:(1)(1)將原方程化為整式方程;將原方程化為整式方程;(2)(2)確確定增根;定增根;(3)(3)將增根代入變形后的整式方程,求出參數(shù)的值將增根代入變形后的整式方程,求出參數(shù)的值是由分式方程化成的整式方程的根是由分式方程化成的整式方程的根使最簡(jiǎn)公分母為零使最簡(jiǎn)公分母為零考點(diǎn)三
24、考點(diǎn)三 列分式方程解應(yīng)用題列分式方程解應(yīng)用題1.1.列分式方程解應(yīng)用題和其他列方程解應(yīng)用題一樣列分式方程解應(yīng)用題和其他列方程解應(yīng)用題一樣, ,不同之處是列出不同之處是列出的方程是分式方程的方程是分式方程. .求出分式方程解后,一定要記住對(duì)所列方程和實(shí)際問(wèn)題求出分式方程解后,一定要記住對(duì)所列方程和實(shí)際問(wèn)題驗(yàn)根驗(yàn)根,不要缺,不要缺少了這一步少了這一步. .2.2.應(yīng)用問(wèn)題中常用的數(shù)量關(guān)系及題型應(yīng)用問(wèn)題中常用的數(shù)量關(guān)系及題型(1 1)數(shù)字問(wèn)題)數(shù)字問(wèn)題. .(包括日歷中的數(shù)字規(guī)律)(包括日歷中的數(shù)字規(guī)律)設(shè)個(gè)位數(shù)字為設(shè)個(gè)位數(shù)字為c c,十位數(shù)字為,十位數(shù)字為b b,百位數(shù)字為,百位數(shù)字為a a,則這
25、個(gè)三位數(shù)是,則這個(gè)三位數(shù)是_;日歷中前后兩日差日歷中前后兩日差_,上下兩日差,上下兩日差_._.100a+10b+c17(2 2)體積變化問(wèn)題)體積變化問(wèn)題. .(3 3)打折銷(xiāo)售問(wèn)題)打折銷(xiāo)售問(wèn)題. .利潤(rùn)利潤(rùn)=_-=_-成本;成本;利潤(rùn)率利潤(rùn)率= = 100%.100%.(4 4)行程問(wèn)題)行程問(wèn)題. .路程路程=_=_._.若用若用v v表示輪船的速度,用表示輪船的速度,用v v順、順、v v逆、逆、v v水分別表示輪船順?biāo)?、逆水分別表示輪船順?biāo)?、逆水和水流的速度,在下列式子中填空水和水流的速度,在下列式子中填? .v v順順v v v v逆逆v v_v v_ _ v v水水_售價(jià)售價(jià)
26、速度速度時(shí)間時(shí)間v水水v水水在輪船航行問(wèn)題中,知在輪船航行問(wèn)題中,知v v順順、v v逆逆、v v、v v水水中的任何兩個(gè)量,總能求出其中的任何兩個(gè)量,總能求出其他的量他的量(5)(5)教育儲(chǔ)蓄問(wèn)題教育儲(chǔ)蓄問(wèn)題利息利息_;本息和本息和_ _ 本金本金(1(1利率利率期數(shù)期數(shù)) );利息稅利息稅_ _ _;貸款利息貸款數(shù)額貸款利息貸款數(shù)額利率利率期數(shù)期數(shù)本金本金利率利率期數(shù)期數(shù)本金利息本金利息利息利息利息稅率利息稅率不等式考點(diǎn)一考點(diǎn)一 不等式的基本概念不等式的基本概念考點(diǎn)二考點(diǎn)二 不等式的基本性質(zhì)不等式的基本性質(zhì)溫馨提示:溫馨提示:一定要注意應(yīng)用不等式的基本性質(zhì)一定要注意應(yīng)用不等式的基本性質(zhì)3時(shí)
27、,要改變不等號(hào)的方向時(shí),要改變不等號(hào)的方向.不等式組不等式組考點(diǎn)一考點(diǎn)一 一元一次不等式組的有關(guān)概念一元一次不等式組的有關(guān)概念考點(diǎn)二考點(diǎn)二 一元一次不等式組的解法一元一次不等式組的解法2 2兩個(gè)一元一次不等式所組成的不等式組的解集情況見(jiàn)下表兩個(gè)一元一次不等式所組成的不等式組的解集情況見(jiàn)下表( (其中其中a ab b) ):x xa ax xb ba ax xb b無(wú)解無(wú)解溫馨提示溫馨提示當(dāng)不等式組中含有當(dāng)不等式組中含有“”“”或或“”“”時(shí),不等式組的解法和解集取法不時(shí),不等式組的解法和解集取法不變,只是表示在數(shù)軸上需要注意區(qū)分實(shí)心點(diǎn)和空心圓圈的使用變,只是表示在數(shù)軸上需要注意區(qū)分實(shí)心點(diǎn)和空心
28、圓圈的使用. .考點(diǎn)三考點(diǎn)三 一元一次不等式組的特殊解一元一次不等式組的特殊解一元一次不等式組的特殊解主要是指整數(shù)解、非負(fù)整數(shù)解、負(fù)整數(shù)解一元一次不等式組的特殊解主要是指整數(shù)解、非負(fù)整數(shù)解、負(fù)整數(shù)解等等. .不等式組的特殊解,包含在它的解集中不等式組的特殊解,包含在它的解集中. .因此,解決此類(lèi)問(wèn)題的關(guān)鍵因此,解決此類(lèi)問(wèn)題的關(guān)鍵是先求出不等式組的解集,然后求其特殊解是先求出不等式組的解集,然后求其特殊解. .平面直角坐標(biāo)系考點(diǎn)一考點(diǎn)一 平面內(nèi)點(diǎn)的坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)1 1有序數(shù)對(duì)有序數(shù)對(duì)(1)(1)平面內(nèi)的點(diǎn)可以用一對(duì)平面內(nèi)的點(diǎn)可以用一對(duì) 來(lái)表示例如點(diǎn)來(lái)表示例如點(diǎn)A A在平面內(nèi)可在平面內(nèi)可表示為
29、表示為A A( (a a,b b) ),其中,其中a a 表示點(diǎn)表示點(diǎn) A A 的橫坐標(biāo),的橫坐標(biāo),b b 表示點(diǎn)表示點(diǎn) A A 的縱坐標(biāo)的縱坐標(biāo)(2)(2)平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)是平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)是 的關(guān)系,即平面內(nèi)的任何的關(guān)系,即平面內(nèi)的任何一個(gè)點(diǎn)可以用一對(duì)一個(gè)點(diǎn)可以用一對(duì) 來(lái)表示;反過(guò)來(lái)每一對(duì)有序?qū)崝?shù)都表示平面來(lái)表示;反過(guò)來(lái)每一對(duì)有序?qū)崝?shù)都表示平面內(nèi)的一個(gè)點(diǎn)內(nèi)的一個(gè)點(diǎn)(3)(3)有序?qū)崝?shù)對(duì)表示這一對(duì)實(shí)數(shù)是有有序?qū)崝?shù)對(duì)表示這一對(duì)實(shí)數(shù)是有 的,即的,即(1,2)(1,2)和和(2,1)(2,1)表示表示兩個(gè)兩個(gè) 的點(diǎn)的點(diǎn)有序?qū)崝?shù)有序?qū)崝?shù)一一對(duì)應(yīng)一一對(duì)應(yīng)有序?qū)崝?shù)有序?qū)崝?shù)不同不同順序順序考
30、點(diǎn)一考點(diǎn)一 平面內(nèi)點(diǎn)的坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)規(guī)律平面內(nèi)點(diǎn)的坐標(biāo)規(guī)律(1)(1)各象限內(nèi)點(diǎn)的坐標(biāo)的特征各象限內(nèi)點(diǎn)的坐標(biāo)的特征點(diǎn)點(diǎn)P P( (x x,y y) )在第一象限在第一象限x x0 0,y y0 0; 點(diǎn)點(diǎn)P P( (x x,y y) )在第二象限在第二象限x x0 0,y y0 0;點(diǎn)點(diǎn)P P( (x x,y y) )在第三象限在第三象限x x0 0,y y0 0; 點(diǎn)點(diǎn)P P( (x x,y y) )在第四象限在第四象限x x0 0,y y0.0.(2)(2)坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特征坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特征點(diǎn)點(diǎn)P P( (x x,y y) )在在x x軸上軸上y y0 0,
31、x x為任意實(shí)數(shù);為任意實(shí)數(shù);點(diǎn)點(diǎn)P P( (x x,y y) )在在y y軸上軸上x(chóng) x0 0,y y為任意實(shí)數(shù);為任意實(shí)數(shù);點(diǎn)點(diǎn)P P( (x x,y y) )在坐標(biāo)原點(diǎn)在坐標(biāo)原點(diǎn)x x0 0,y y0.0.考點(diǎn)二考點(diǎn)二 特殊點(diǎn)的坐標(biāo)特征特殊點(diǎn)的坐標(biāo)特征1 1平行于坐標(biāo)軸的直線上的點(diǎn)的坐標(biāo)特征平行于坐標(biāo)軸的直線上的點(diǎn)的坐標(biāo)特征(1)(1)平行于平行于x x軸軸( (或垂直于或垂直于y y軸軸) )的直線上點(diǎn)的的直線上點(diǎn)的 相同,橫坐標(biāo)為相同,橫坐標(biāo)為不相等的實(shí)數(shù)不相等的實(shí)數(shù)(2)(2)平行于平行于y y軸軸( (或垂直于或垂直于x x軸軸) )的直線上點(diǎn)的的直線上點(diǎn)的 相同,縱坐標(biāo)為相同,
32、縱坐標(biāo)為不相等的實(shí)數(shù)不相等的實(shí)數(shù)2 2各象限角平分線上的點(diǎn)的坐標(biāo)特征各象限角平分線上的點(diǎn)的坐標(biāo)特征(1)(1)第一、三象限角平分線上的點(diǎn),橫、縱坐標(biāo)第一、三象限角平分線上的點(diǎn),橫、縱坐標(biāo)_._.(2)(2)第二、四象限角平分線上的點(diǎn),橫、縱坐標(biāo)第二、四象限角平分線上的點(diǎn),橫、縱坐標(biāo)_ _ _. .縱坐標(biāo)縱坐標(biāo)橫坐標(biāo)橫坐標(biāo)相等相等互為相反數(shù)互為相反數(shù)3 3對(duì)稱點(diǎn)的坐標(biāo)特征對(duì)稱點(diǎn)的坐標(biāo)特征點(diǎn)點(diǎn)P P( (x x,y y) )關(guān)于關(guān)于x x軸的對(duì)稱點(diǎn)軸的對(duì)稱點(diǎn)P P1 1的坐標(biāo)為的坐標(biāo)為( (x x,y y) );關(guān)于;關(guān)于y y軸的對(duì)稱點(diǎn)軸的對(duì)稱點(diǎn)P P2 2的坐標(biāo)為的坐標(biāo)為( (x x,y y)
33、 );關(guān)于原點(diǎn)的對(duì)稱點(diǎn);關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P P3 3的坐標(biāo)為的坐標(biāo)為( (x x,y y) )以上特征可歸納為:以上特征可歸納為:(1)(1)關(guān)于關(guān)于x x軸對(duì)稱的兩點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)軸對(duì)稱的兩點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)_ _._ _.(2)(2)關(guān)于關(guān)于y y軸對(duì)稱的兩點(diǎn),橫坐標(biāo)軸對(duì)稱的兩點(diǎn),橫坐標(biāo)_ _ ,縱坐標(biāo)相同,縱坐標(biāo)相同(3)(3)關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),橫、縱坐標(biāo)均關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),橫、縱坐標(biāo)均_ _._ _.互為相反數(shù)互為相反數(shù)互為相反數(shù)互為相反數(shù)互為相反數(shù)互為相反數(shù)直線型考點(diǎn)一考點(diǎn)一 線段、射線、直線線段、射線、直線1 1線段的性質(zhì)線段的性質(zhì)(1)(1)所有連接兩點(diǎn)的線中所有連
34、接兩點(diǎn)的線中,_,_最短,即過(guò)兩點(diǎn)有且只有一條直線最短,即過(guò)兩點(diǎn)有且只有一條直線. .(2)(2)線段垂直平分線上的點(diǎn)到這條線段的線段垂直平分線上的點(diǎn)到這條線段的 的距離相等的距離相等2 2射線、線段又可看作是直線的一部分,即整體與部分的關(guān)系;將射線、線段又可看作是直線的一部分,即整體與部分的關(guān)系;將線段無(wú)限延長(zhǎng)一方得到射線,兩方無(wú)限延長(zhǎng)可得到直線線段無(wú)限延長(zhǎng)一方得到射線,兩方無(wú)限延長(zhǎng)可得到直線3 3直線、射線、線段的區(qū)別與聯(lián)系直線、射線、線段的區(qū)別與聯(lián)系線段線段兩個(gè)端點(diǎn)兩個(gè)端點(diǎn)考點(diǎn)二考點(diǎn)二 角角1 1有公共端點(diǎn)的兩條射線組成的圖形叫做角;如果一個(gè)角的兩邊成有公共端點(diǎn)的兩條射線組成的圖形叫做角
35、;如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角,大于的角叫做鈍角,大于0 0小于直角的角叫做銳角小于直角的角叫做銳角2 21 1周角周角 度,度,1 1平角平角 度,度,1 1直角直角 度,度,1 1_分,分,1 1分分 秒秒3 3余角、補(bǔ)角及其性質(zhì)余角、補(bǔ)角及其性質(zhì)互為補(bǔ)角互為補(bǔ)角: :如果兩個(gè)角的和是一個(gè)如果兩個(gè)角的和是一個(gè) , ,那么這兩個(gè)角叫做互為補(bǔ)角那么這兩個(gè)角叫做互為補(bǔ)角. .互為余角互為余角: :如果兩個(gè)角的和是一個(gè)如果兩個(gè)角的和是一個(gè) , ,那么這兩個(gè)角叫做互為余角
36、那么這兩個(gè)角叫做互為余角. .性質(zhì):同角性質(zhì):同角( (或或_)_)的余角相等;同角的余角相等;同角( (或等角或等角) )的補(bǔ)角相等的補(bǔ)角相等平角平角直角直角等角等角360360180180909060606060溫馨提示:溫馨提示:互為補(bǔ)角、互為余角是相對(duì)兩個(gè)角而言,它們都是由數(shù)量關(guān)系來(lái)定義,互為補(bǔ)角、互為余角是相對(duì)兩個(gè)角而言,它們都是由數(shù)量關(guān)系來(lái)定義,與位置無(wú)關(guān)與位置無(wú)關(guān). .考點(diǎn)三考點(diǎn)三 相交線相交線1 1對(duì)頂角及其性質(zhì)對(duì)頂角及其性質(zhì)對(duì)頂角:兩條直線相交所得到的四個(gè)角中,沒(méi)有公共邊的兩個(gè)角叫做對(duì)頂角:兩條直線相交所得到的四個(gè)角中,沒(méi)有公共邊的兩個(gè)角叫做對(duì)頂角對(duì)頂角性質(zhì):對(duì)頂角性質(zhì):對(duì)頂
37、角_._.2 2垂線及其性質(zhì)垂線及其性質(zhì)垂線:兩條直線相交所構(gòu)成的四個(gè)角中有一個(gè)角是直角,則這兩條直垂線:兩條直線相交所構(gòu)成的四個(gè)角中有一個(gè)角是直角,則這兩條直線互相垂直,其中一條直線叫另一條直線的線互相垂直,其中一條直線叫另一條直線的_._.性質(zhì):性質(zhì):經(jīng)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;經(jīng)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;直線外一點(diǎn)直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短與直線上各點(diǎn)連接的所有線段中,垂線段最短( (簡(jiǎn)說(shuō)成:垂線段最短簡(jiǎn)說(shuō)成:垂線段最短) )相等相等垂線垂線考點(diǎn)四考點(diǎn)四 平行線平行線1 1平行線的定義平行線的定義在同一平面內(nèi),在同一平面內(nèi), 的兩條直線,叫
38、平行線的兩條直線,叫平行線2 2平行公理平行公理經(jīng)過(guò)已知直線外一點(diǎn),有且只有經(jīng)過(guò)已知直線外一點(diǎn),有且只有 條直線與已知直線平行條直線與已知直線平行3 3平行線的性質(zhì)平行線的性質(zhì)(1)(1)如果兩條直線平行,那么如果兩條直線平行,那么 相等;相等;(2)(2)如果兩條直線平行,那么如果兩條直線平行,那么 相等;相等;(3)(3)如果兩條直線平行,那么如果兩條直線平行,那么 互補(bǔ)互補(bǔ)不相交不相交一一同位角同位角內(nèi)錯(cuò)角內(nèi)錯(cuò)角同旁內(nèi)角同旁內(nèi)角4 4平行線的判定平行線的判定(1)(1)定義:在同一平面內(nèi)定義:在同一平面內(nèi) 的兩條直線,叫平行線;的兩條直線,叫平行線;(2)(2) 相等,兩直線平行;相等,
39、兩直線平行;(3)(3) 相等,兩直線平行;相等,兩直線平行;(4)(4)同旁內(nèi)角同旁內(nèi)角 ,兩直線平行,兩直線平行溫馨提示:溫馨提示:除上述平行線識(shí)別方法外,還有除上述平行線識(shí)別方法外,還有“在同一平面內(nèi)垂直于同一直線的兩在同一平面內(nèi)垂直于同一直線的兩條直線平行條直線平行”及及“平行于同一直線的兩條直線平行平行于同一直線的兩條直線平行”的識(shí)別方法的識(shí)別方法. .不相交不相交同位角同位角內(nèi)錯(cuò)角內(nèi)錯(cuò)角互補(bǔ)互補(bǔ)三角形考點(diǎn)一考點(diǎn)一 三角形的概念與分類(lèi)三角形的概念與分類(lèi)1 1由三條線段由三條線段 所圍成的平面圖形,叫做三角形所圍成的平面圖形,叫做三角形2 2三角形按邊可分為:三角形按邊可分為: 三角形
40、和三角形和 三角形;按角可三角形;按角可分為分為 三角形、三角形、 三角形和三角形和 三角形三角形首尾順次相接首尾順次相接不等邊不等邊等腰等腰銳角銳角鈍角鈍角直角直角考點(diǎn)二考點(diǎn)二 三角形的性質(zhì)三角形的性質(zhì)1 1三角形的內(nèi)角和是三角形的內(nèi)角和是 ,三角形的外角等于與它,三角形的外角等于與它 的的兩個(gè)內(nèi)角的和,三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角兩個(gè)內(nèi)角的和,三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角2 2三角形的兩邊之和三角形的兩邊之和 第三邊,兩邊之差第三邊,兩邊之差 第三邊第三邊3 3三角形中的重要線段三角形中的重要線段(1)(1)角平分線角平分線:三角形的三條角平分線交于一點(diǎn),這點(diǎn)叫做三
41、角形的:三角形的三條角平分線交于一點(diǎn),這點(diǎn)叫做三角形的內(nèi)心,它到三角形各邊的距離相等內(nèi)心,它到三角形各邊的距離相等(2)(2)中線中線:三角形的三條中線交于一點(diǎn),這點(diǎn)叫做三角形的重心:三角形的三條中線交于一點(diǎn),這點(diǎn)叫做三角形的重心(3)(3)高高:三角形的三條高交于一點(diǎn),這點(diǎn)叫做三角形的垂心:三角形的三條高交于一點(diǎn),這點(diǎn)叫做三角形的垂心180180不相鄰不相鄰大于大于小于小于(4)(4)三邊垂直平分線三邊垂直平分線:三角形的三邊垂直平分線交于一點(diǎn),這點(diǎn)叫做:三角形的三邊垂直平分線交于一點(diǎn),這點(diǎn)叫做三角形的外心,外心到三角形三個(gè)頂點(diǎn)距離相等三角形的外心,外心到三角形三個(gè)頂點(diǎn)距離相等(5)(5)中
42、位線中位線:三角形中位線平行于第三邊且等于第三邊的一半:三角形中位線平行于第三邊且等于第三邊的一半溫馨提示:溫馨提示:三角形的邊、角之間的關(guān)系是三角形中重要的性質(zhì),在比較角的大小、三角形的邊、角之間的關(guān)系是三角形中重要的性質(zhì),在比較角的大小、線段的長(zhǎng)短及求角或線段中經(jīng)常用到線段的長(zhǎng)短及求角或線段中經(jīng)常用到. .學(xué)習(xí)時(shí)應(yīng)結(jié)合圖形,做到熟練、準(zhǔn)學(xué)習(xí)時(shí)應(yīng)結(jié)合圖形,做到熟練、準(zhǔn)確地應(yīng)用確地應(yīng)用. .三角形的角平分線、高、中線三角形的角平分線、高、中線均為線段均為線段. .考點(diǎn)三考點(diǎn)三 全等三角形的概念與性質(zhì)全等三角形的概念與性質(zhì)1 1能夠完全重合的兩個(gè)三角形叫做全等三角形能夠完全重合的兩個(gè)三角形叫做全
43、等三角形2 2全等三角形的性質(zhì)全等三角形的性質(zhì)(1)(1)全等三角形的全等三角形的 、 分別相等;分別相等;(2)(2)全等三角形的對(duì)應(yīng)線段全等三角形的對(duì)應(yīng)線段( (角平分線、中線、高角平分線、中線、高) )相等、周長(zhǎng)相等、相等、周長(zhǎng)相等、面積相等面積相等對(duì)應(yīng)邊對(duì)應(yīng)邊對(duì)應(yīng)角對(duì)應(yīng)角考點(diǎn)四考點(diǎn)四 全等三角形的判定全等三角形的判定1 1一般三角形全等的判定一般三角形全等的判定(1)(1)如果兩個(gè)三角形的三條邊分別如果兩個(gè)三角形的三條邊分別 ,那么這兩個(gè)三角形全等,那么這兩個(gè)三角形全等,簡(jiǎn)記為簡(jiǎn)記為SSSSSS;(2)(2)如果兩個(gè)三角形有兩邊及其如果兩個(gè)三角形有兩邊及其夾角夾角分別對(duì)應(yīng)相等,那么這兩
44、個(gè)三角分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等,簡(jiǎn)記為形全等,簡(jiǎn)記為SASSAS;(3)(3)如果兩個(gè)三角形的兩角及其如果兩個(gè)三角形的兩角及其夾邊夾邊分別對(duì)應(yīng)相等,那么這兩個(gè)三角分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等,簡(jiǎn)記為形全等,簡(jiǎn)記為ASAASA;(4)(4)如果三角形的兩角及其中一角的對(duì)邊分別對(duì)應(yīng)相等,那么這兩個(gè)如果三角形的兩角及其中一角的對(duì)邊分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等,簡(jiǎn)記為三角形全等,簡(jiǎn)記為AASAAS. .對(duì)應(yīng)相等對(duì)應(yīng)相等2 2直角三角形全等的判定直角三角形全等的判定(1)(1)兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;(2)(2)一邊及該邊所對(duì)銳角
45、對(duì)應(yīng)相等的兩個(gè)直角三角形全等;一邊及該邊所對(duì)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;(3)(3)如果兩個(gè)直角三角形的斜邊及一條如果兩個(gè)直角三角形的斜邊及一條 分別對(duì)應(yīng)相等,那么分別對(duì)應(yīng)相等,那么這兩個(gè)直角三角形全等簡(jiǎn)記為這兩個(gè)直角三角形全等簡(jiǎn)記為HLHL. .3 3證明三角形全等的思路證明三角形全等的思路直角邊直角邊考點(diǎn)一考點(diǎn)一 等腰三角形等腰三角形1 1概念及分類(lèi)概念及分類(lèi)有有 的三角形叫等腰三角形;有的三角形叫等腰三角形;有 的三角形叫做等的三角形叫做等邊三角形,也叫正三角形;等腰三角形分為邊三角形,也叫正三角形;等腰三角形分為 的等腰三角形的等腰三角形和和 _的等腰三角形的等腰三角形2 2等腰
46、三角形的性質(zhì)等腰三角形的性質(zhì)(1)(1)等腰三角形兩腰相等;等腰三角形的兩個(gè)底角等腰三角形兩腰相等;等腰三角形的兩個(gè)底角 ;(2)(2)等腰三角形的頂角角平分線、底邊上的中線和高互相等腰三角形的頂角角平分線、底邊上的中線和高互相 ,簡(jiǎn),簡(jiǎn)稱稱“三線合一三線合一”;三邊相等三邊相等腰和底不相等腰和底不相等腰和底相等腰和底相等相等相等重合重合兩邊相等兩邊相等(3)(3)等腰等腰( (非等邊非等邊) )三角形是軸對(duì)稱圖形,它有一條對(duì)稱軸三角形是軸對(duì)稱圖形,它有一條對(duì)稱軸溫馨提示:溫馨提示:應(yīng)用性質(zhì)應(yīng)用性質(zhì)“三線合一三線合一”時(shí),一定要注意是頂角的平分線、底邊上的中時(shí),一定要注意是頂角的平分線、底邊上
47、的中線、底邊上的高互相重合,利用它可以證明線段相等、角相等及直線垂直線、底邊上的高互相重合,利用它可以證明線段相等、角相等及直線垂直. .考點(diǎn)二考點(diǎn)二 等邊三角形的性質(zhì)與判定等邊三角形的性質(zhì)與判定1 1性質(zhì):性質(zhì):(1)(1)等邊三角形的內(nèi)角都相等,且等于等邊三角形的內(nèi)角都相等,且等于6060;(2)(2)等邊三角等邊三角形是軸對(duì)稱圖形,等邊三角形每條邊上的中線、高和所對(duì)角的平分線都形是軸對(duì)稱圖形,等邊三角形每條邊上的中線、高和所對(duì)角的平分線都“三線合一三線合一”,它們所在的直線都是等邊三角形的對(duì)稱軸,它們所在的直線都是等邊三角形的對(duì)稱軸2 2判定:三個(gè)角相等的三角形是等邊三角形;有一個(gè)角是判
48、定:三個(gè)角相等的三角形是等邊三角形;有一個(gè)角是6060的等的等腰三角形是等邊三角形腰三角形是等邊三角形溫馨提示:溫馨提示:(1 1)頂角是直角的等腰三角形是等腰直角三角形)頂角是直角的等腰三角形是等腰直角三角形. .(2 2)等邊三角形外心、內(nèi)心、重心、垂心四心合一)等邊三角形外心、內(nèi)心、重心、垂心四心合一. .考點(diǎn)三考點(diǎn)三 線段的中垂線線段的中垂線1 1概念:垂直且平分一條線段的直線叫做這條線段的垂直平分線,概念:垂直且平分一條線段的直線叫做這條線段的垂直平分線,也叫中垂線也叫中垂線2 2性質(zhì):線段中垂線上的點(diǎn)到這條線段兩端點(diǎn)的距離相等性質(zhì):線段中垂線上的點(diǎn)到這條線段兩端點(diǎn)的距離相等3 3判
49、定:到一條線段的兩個(gè)端點(diǎn)距離相等的點(diǎn)在中垂線上,線段的判定:到一條線段的兩個(gè)端點(diǎn)距離相等的點(diǎn)在中垂線上,線段的中垂線可以看作是到線段兩端點(diǎn)距離相等的點(diǎn)的集合中垂線可以看作是到線段兩端點(diǎn)距離相等的點(diǎn)的集合考點(diǎn)四考點(diǎn)四 直角三角形的性質(zhì)、判定直角三角形的性質(zhì)、判定1 1性質(zhì)性質(zhì)(1)(1)直角三角形的兩個(gè)銳角直角三角形的兩個(gè)銳角 ;(2)(2)勾股定理:勾股定理:a a2 2b b2 2c c2 2( (在在RtRtABCABC中,中,C C9090) );(3)(3)在直角三角形中,如果有一個(gè)銳角等于在直角三角形中,如果有一個(gè)銳角等于3030,那么它所對(duì)的直角,那么它所對(duì)的直角邊等于斜邊的邊等于
50、斜邊的 ;(4)(4)在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角為角邊所對(duì)的銳角為 ;(5)(5)直角三角形直角三角形 上的中線等于斜邊的一半上的中線等于斜邊的一半互余互余一半一半3030斜邊斜邊2 2判定判定(1)(1)有一個(gè)角是有一個(gè)角是 的三角形是直角三角形;的三角形是直角三角形;(2)(2)勾股定理的逆定理:如果三角形的三邊長(zhǎng)勾股定理的逆定理:如果三角形的三邊長(zhǎng)a a、b b、c c滿足滿足a a2 2b b2 2c c2 2,那么這個(gè)三角形是直角三角形;那么這個(gè)三角形是直角三角形;(3)(3)如果一個(gè)
51、三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形如果一個(gè)三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形為為 三角形;三角形;(4)(4)在一個(gè)三角形中在一個(gè)三角形中, ,如果有兩個(gè)角互余如果有兩個(gè)角互余, ,那么這個(gè)三角形是那么這個(gè)三角形是 三三角形角形直角直角直角直角直角直角溫馨提示:溫馨提示:(1 1)勾股定理的逆定理是判定三角形為直角三角形的重要方法)勾股定理的逆定理是判定三角形為直角三角形的重要方法. .(2 2)能夠成為直角三角形三條邊長(zhǎng)的三個(gè)正整數(shù),稱為勾股數(shù))能夠成為直角三角形三條邊長(zhǎng)的三個(gè)正整數(shù),稱為勾股數(shù). .(3 3)若)若a a、b b、c c為一直角三角形的三邊長(zhǎng),則
52、以為一直角三角形的三邊長(zhǎng),則以mama、mbmb、mc(mmc(m0)0)為三邊的三角形也是直角三角形為三邊的三角形也是直角三角形. .考點(diǎn)考點(diǎn) 定義、命題、定理、公理定義、命題、定理、公理有關(guān)概念有關(guān)概念(1)(1)定義是能明確指出概念含義或特征的句子,它必須嚴(yán)密定義是能明確指出概念含義或特征的句子,它必須嚴(yán)密(2)(2)命題:判斷一件事情的語(yǔ)句命題:判斷一件事情的語(yǔ)句命題由題設(shè)和命題由題設(shè)和 兩部分組成兩部分組成命題的真假命題的真假: :正確的命題稱為正確的命題稱為 ; 的命題稱為假命題的命題稱為假命題. .互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的題設(shè)是第二個(gè)命題的互逆命題:在兩個(gè)命題中,
53、如果第一個(gè)命題的題設(shè)是第二個(gè)命題的結(jié)論,而第一個(gè)命題的結(jié)論是第二個(gè)命題的題設(shè),那么這兩個(gè)命題稱為互結(jié)論,而第一個(gè)命題的結(jié)論是第二個(gè)命題的題設(shè),那么這兩個(gè)命題稱為互逆命題每一個(gè)命題都有逆命題逆命題每一個(gè)命題都有逆命題真命題真命題錯(cuò)誤錯(cuò)誤結(jié)論結(jié)論(3)(3)定理:經(jīng)過(guò)證明的真命題叫做定理定理:經(jīng)過(guò)證明的真命題叫做定理因?yàn)槎ɡ淼哪婷}不一定都因?yàn)槎ɡ淼哪婷}不一定都是真命題,所以不是所有的定理都有逆定理是真命題,所以不是所有的定理都有逆定理(4)(4)公理:有一類(lèi)命題的正確性是人們?cè)陂L(zhǎng)期的實(shí)踐中總結(jié)出來(lái)的,公理:有一類(lèi)命題的正確性是人們?cè)陂L(zhǎng)期的實(shí)踐中總結(jié)出來(lái)的,并把它們作為判斷其他命題真?zhèn)蔚牟阉鼈?/p>
54、作為判斷其他命題真?zhèn)蔚脑家罁?jù)原始依據(jù),這樣的真命題叫公理,這樣的真命題叫公理溫馨提示:溫馨提示:對(duì)命題的正確性理解一定要準(zhǔn)確,判定命題不成立時(shí),有時(shí)可以舉反對(duì)命題的正確性理解一定要準(zhǔn)確,判定命題不成立時(shí),有時(shí)可以舉反例說(shuō)明道理;命題有正、誤,錯(cuò)誤的命題也是命題例說(shuō)明道理;命題有正、誤,錯(cuò)誤的命題也是命題. .考點(diǎn)三考點(diǎn)三 證明證明1 1證明:根據(jù)題設(shè)、定義、公理及定理,經(jīng)過(guò)邏輯推理來(lái)判斷一個(gè)證明:根據(jù)題設(shè)、定義、公理及定理,經(jīng)過(guò)邏輯推理來(lái)判斷一個(gè)命題是否正確,這一推理過(guò)程稱為證明命題是否正確,這一推理過(guò)程稱為證明2 2證明的一般步驟:證明的一般步驟:審題,找出命題的審題,找出命題的 和和 ;
55、由由題意畫(huà)出圖形,具有一般性;題意畫(huà)出圖形,具有一般性;用數(shù)學(xué)語(yǔ)言寫(xiě)出用數(shù)學(xué)語(yǔ)言寫(xiě)出 、 ;分析證明的思路;分析證明的思路;寫(xiě)出寫(xiě)出 ,每一步應(yīng)有根據(jù),要推理嚴(yán)密,每一步應(yīng)有根據(jù),要推理嚴(yán)密證明過(guò)程證明過(guò)程題設(shè)題設(shè)結(jié)論結(jié)論已知已知求證求證多邊形考點(diǎn)一考點(diǎn)一 多邊形多邊形不相鄰不相鄰(n2)180360考點(diǎn)二考點(diǎn)二 平面圖形的密鋪平面圖形的密鋪1 1密鋪的定義密鋪的定義用形狀,大小完全相同的一種或幾種平面圖形進(jìn)行拼接,彼此之間不用形狀,大小完全相同的一種或幾種平面圖形進(jìn)行拼接,彼此之間不留空隙、不重疊地鋪成一片,這就是平面圖形的密鋪,又稱作平面圖形的留空隙、不重疊地鋪成一片,這就是平面圖形的密鋪
56、,又稱作平面圖形的鑲嵌鑲嵌2 2平面圖形的密鋪平面圖形的密鋪溫馨提示:溫馨提示:能密鋪的圖形在一個(gè)拼接點(diǎn)處的特點(diǎn):幾個(gè)圖形的內(nèi)角拼接在一起時(shí),能密鋪的圖形在一個(gè)拼接點(diǎn)處的特點(diǎn):幾個(gè)圖形的內(nèi)角拼接在一起時(shí),其和等于其和等于360360, ,并使相等的邊互相重合并使相等的邊互相重合. .考點(diǎn)三考點(diǎn)三 平行四邊形的定義、性質(zhì)與判定平行四邊形的定義、性質(zhì)與判定1 1定義:兩組對(duì)邊定義:兩組對(duì)邊 的四邊形是平行四邊形的四邊形是平行四邊形2 2性質(zhì):性質(zhì):(1)(1)平行四邊形的對(duì)邊平行四邊形的對(duì)邊 ;(2)(2)平行四邊形的對(duì)角平行四邊形的對(duì)角 ,鄰角,鄰角 ;(3)(3)平行四邊形的對(duì)角線平行四邊形的
57、對(duì)角線 ;(4)(4)平行四邊形是平行四邊形是 對(duì)稱圖形對(duì)稱圖形3 3判定:判定:(1)(1)兩組對(duì)邊分別兩組對(duì)邊分別 的四邊形是平行四邊形;的四邊形是平行四邊形;(2)(2)兩組對(duì)邊分別兩組對(duì)邊分別 的四邊形是平行四邊形;的四邊形是平行四邊形;(3)(3)一組對(duì)邊一組對(duì)邊 的四邊形是平行四邊形;的四邊形是平行四邊形;(4)(4)兩組對(duì)角分別兩組對(duì)角分別 的四邊形是平行四邊形;的四邊形是平行四邊形;(5)(5)對(duì)角線對(duì)角線 的四邊形是平行四邊形的四邊形是平行四邊形分別平行分別平行平行且相等平行且相等相等相等互補(bǔ)互補(bǔ)互相平分互相平分中心中心平行平行相等相等平行且相等平行且相等相等相等互相平分互相
58、平分考點(diǎn)一考點(diǎn)一 矩形的定義、性質(zhì)和判定矩形的定義、性質(zhì)和判定1 1定義:有一個(gè)角是直角的平行四邊形是矩形定義:有一個(gè)角是直角的平行四邊形是矩形2 2性質(zhì):性質(zhì):(1)(1)矩形的四個(gè)角都是直角;矩形的四個(gè)角都是直角;(2)(2)矩形的對(duì)角線矩形的對(duì)角線_;(3)(3)矩形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有矩形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有兩條對(duì)稱軸,它的對(duì)稱中心是對(duì)角線的交點(diǎn)兩條對(duì)稱軸,它的對(duì)稱中心是對(duì)角線的交點(diǎn)3 3判定:判定:(1)(1)有有 的平行四邊形是矩形;的平行四邊形是矩形;(2)(2)有三有三個(gè)角是直角的四邊形是矩形;個(gè)角是直角的四邊形是矩形;(3)(3)對(duì)角線相等
59、的對(duì)角線相等的 是矩形是矩形互相平分且相等互相平分且相等一個(gè)角是直角一個(gè)角是直角平行四邊形平行四邊形考點(diǎn)二考點(diǎn)二 菱形的定義、性質(zhì)和判定菱形的定義、性質(zhì)和判定1 1定義:有一組鄰邊相等的平行四邊形是菱形定義:有一組鄰邊相等的平行四邊形是菱形2 2性質(zhì):性質(zhì):(1)(1)菱形的四條邊菱形的四條邊 ,對(duì)角線互相,對(duì)角線互相 ,并,并且每條對(duì)角線平分一組對(duì)角且每條對(duì)角線平分一組對(duì)角;(2);(2)菱形既是軸對(duì)稱圖形又是中心對(duì)稱圖形菱形既是軸對(duì)稱圖形又是中心對(duì)稱圖形3 3判定:判定:(1)(1)有一組鄰邊相等的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形;(2)(2)四條邊都相四條邊都相等的四邊
60、形是菱形;等的四邊形是菱形;(3)(3)對(duì)角線對(duì)角線 的平行四邊形是菱形;的平行四邊形是菱形;(4)(4)對(duì)角線互相垂直平分的四邊形是菱形對(duì)角線互相垂直平分的四邊形是菱形都相等都相等垂直平分垂直平分互相垂直互相垂直考點(diǎn)三考點(diǎn)三 正方形的定義、性質(zhì)和判定正方形的定義、性質(zhì)和判定1 1定義:有一個(gè)角是直角的菱形是正方形或有一組鄰邊相等的矩形定義:有一個(gè)角是直角的菱形是正方形或有一組鄰邊相等的矩形是正方形是正方形2 2性質(zhì):性質(zhì):(1)(1)正方形四個(gè)角都是正方形四個(gè)角都是 ,四條邊都,四條邊都 ;(2)(2)正方形兩條對(duì)角線正方形兩條對(duì)角線 ,并且互相,并且互相 ,每條對(duì)角線平,每條對(duì)角線平分一組
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度大米種植保險(xiǎn)代理服務(wù)合同4篇
- 2025年度傳統(tǒng)醫(yī)學(xué)中藥炮制傳承合同范本3篇
- 2025年度個(gè)人勞務(wù)合同(項(xiàng)目管理專家范本)3篇
- 2025年度電梯智能化改造與購(gòu)銷(xiāo)合同4篇
- 2025年度網(wǎng)約車(chē)牌照出租及服務(wù)質(zhì)量保障合同4篇
- 2025年度農(nóng)業(yè)產(chǎn)業(yè)扶貧項(xiàng)目投資合同4篇
- 二零二五年度出海合同范本:全球營(yíng)銷(xiāo)合作框架協(xié)議4篇
- 2025年度汽車(chē)零部件運(yùn)輸與倉(cāng)儲(chǔ)一體化服務(wù)協(xié)議4篇
- 2025年外墻保溫工程節(jié)能評(píng)估與施工監(jiān)管合同3篇
- 2025年度個(gè)人挖機(jī)租賃售后服務(wù)合同3篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- 企業(yè)融資報(bào)告特斯拉成功案例分享
- 五年(2020-2024)高考地理真題分類(lèi)匯編(全國(guó)版)專題12區(qū)域發(fā)展解析版
- 《阻燃材料與技術(shù)》課件 第8講 阻燃木質(zhì)材料
- 低空經(jīng)濟(jì)的社會(huì)接受度與倫理問(wèn)題分析
- GB/T 4732.1-2024壓力容器分析設(shè)計(jì)第1部分:通用要求
- 6第六章 社會(huì)契約論.電子教案教學(xué)課件
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件
- 六編元代文學(xué)
評(píng)論
0/150
提交評(píng)論