高中數(shù)學(xué)平面向量的數(shù)量積教案_第1頁
高中數(shù)學(xué)平面向量的數(shù)量積教案_第2頁
高中數(shù)學(xué)平面向量的數(shù)量積教案_第3頁
高中數(shù)學(xué)平面向量的數(shù)量積教案_第4頁
高中數(shù)學(xué)平面向量的數(shù)量積教案_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第三節(jié) 平面向量的數(shù)量積 考綱解讀1、 理解平面向量數(shù)量積的含義及其物理意義。2、 了解平面向量數(shù)量積的與向量投影的關(guān)系。3、 掌握數(shù)量積的坐標表達,會進行平面向量數(shù)量積的運算。4、 能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系??键c梳理1平面向量的數(shù)量積(1)定義:已知兩個非零向量a和b,它們的夾角為,則數(shù)量 叫做a與b的數(shù)量積(或內(nèi)積)規(guī)定:零向量與任一向量的數(shù)量積為 . 向量的投影:cos=r,稱為向量在方向上的投影。投影的絕對值稱為射影; (2)幾何意義:數(shù)量積a·b等于a的長度|a|與b在a方向上的投影 的乘積2平面向量數(shù)量積的運算律(1)a

2、3;bb·a;(2)(a)·b r;(3)(ab)·ca·cb·c.3平面向量數(shù)量積的性質(zhì)設(shè)非零向量a(x1,y1),b(x2,y2),a,b結(jié)論幾何表示坐標表示模夾角與的關(guān)系基礎(chǔ)自測1、設(shè)、是任意的非零平面向量,且相互不共線,則 (·)(·)= |<| (·)(·)不與垂直 (3+2)(32)=9|24|2中,是真命題的有( )a. b. c. d.2、| |=1,| |=2,= + ,且,則向量與的夾角為( )a30°b60°c120°d150°3、已知向

3、量與的夾角為,則等于( ) a5b4c3d14.(11年遼寧)已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,則k=( )(a)-12 (b)-6 (c)6 (d)125.已知向量滿足,與的夾角為,則在上的投影為 題型一:數(shù)量積的概念及運算例1判斷下列各命題正確與否:(1); (2); (3)若,則;(4)若,則當(dāng)且僅當(dāng)時成立;(5)對任意向量都成立; (6)對任意向量,有。變式1 (1) 已知中,過重心的直線交邊于,交邊于, ,則 題型二:向量的夾角與模例2(1)過abc的重心任作一直線分別交ab,ac于點d、e若,則的值為( ) (a)4 (b)3 (c)2 (d

4、)1(2)已知向量=(cos,sin),=(cos,sin),且,那么與的夾角的大小是 。(3)已知兩單位向量與的夾角為,若,試求與的夾角。變式2(1)(09遼寧)平面向量a與b的夾角為,a(2,0), | b |1,則 | a2b |等于a. b.2 c.4 d.12題型三平面向量的垂直問題例3.已知平面向量,(1)證明:;(2)若存在不同時為的實數(shù)和,使,且,試求函數(shù)關(guān)系式.變式3、設(shè)向量滿足若,求的值題型四 數(shù)量積的綜合應(yīng)用例4(看80頁例4)已知,其中(1)求證: 與互相垂直;(2)若與的長度相等,求的值(為非零的常數(shù))變式4已知,函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)若,求的值。課后

5、作業(yè)一、選擇題1(2010·廣東)若向量a(1,1),b(2,5),c(3,x)滿足條件(8ab)·c30,則x()a6 b5 c4 d32已知平面向量a(1,3),b(4,2),ab與a垂直,則()a1 b1 c2 d2 3.(2011年全國卷文科3)設(shè)向量滿足|=|=1, ,則 (a) (b) (c) (d)4設(shè)非零向量a、b、c滿足|a|b|c|,abc,則a,b()a150° b120° c60° d30°5設(shè)a(a,1)、b(2,b)、c(4,5)為坐標平面上三點,o為坐標原點,若與在方向上的投影相同,則a與b滿足的關(guān)系式為

6、()a4a5b3 b5a4b3c4a5b14 d5a4b14二、填空題6已知向量a(1,sin ),b(1,cos ),則|ab|的最大值為_7關(guān)于平面向量a,b,c,有下列三個命題:若ab且ac,則bc.若a(2,k),b(2,6),ab,則k6.非零向量a和b滿足|a|b|ab|,則a與ab的夾角為30°.其中真命題的序號為_(寫出所有真命題的序號)8|a|1,|b|,且a(ab),則向量a與向量b的夾角是_三、解答題 9在平面直角坐標系xoy中,已知點a(1,2),b(2,3),c(2,1)(1)求以線段ab、ac為鄰邊的平行四邊形的兩條對角線的長;(2)設(shè)實數(shù)t滿足(t)&#

7、183;0,求t的值10已知a(3,0),b(0,3),c(cos ,sin )(1)若·1,求sin()的值;(2)若|,且(0,),求與的夾角一、選擇題:4(2011年重慶卷文科5)已知向量共線,那么的值為a1 b2 c3 d45(11年廣東)已知向量,若為實數(shù),則= a b c d二、填空題:5. (2011年海南卷文科13)已知與為兩個不共線的單位向量,k為實數(shù),若向量與向量垂直,則 .6. (2011年福建卷文科13)若向量a=(1,1),b(-1,2),則a·b等于_.7. (2011年四川卷文科7)如圖,正六邊形abcdef中,=(a)0 (b) (c) (d

8、)8(2011年湖南卷文科13)設(shè)向量滿足且的方向相反,則的坐標為 9(2011年湖北卷文科2)若向量,則與的夾角等于a.b.c.d. 10.(2011年浙江卷文科15)若平面向量、 滿足,且以向量、為鄰邊的平行四邊形的面積為,則和的夾角取值范圍是_。11. (2011年天津卷文科14)已知直角梯形abcd中,adbc,ad=2,bc=1,p是腰dc上的動點,則的最小值為 .12.(2011年江蘇卷10)已知是夾角為的兩個單位向量, 若,則k的值為 .例3、求與向量=,-1)和=(1,)夾角相等,且模為的向量的坐標。 分析:用解方程組思想法一:設(shè)=(x,y),則·=x-y,·=x+y <,>=<,&g

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論