行測總結筆記 學霸筆記 必過_第1頁
行測總結筆記 學霸筆記 必過_第2頁
行測總結筆記 學霸筆記 必過_第3頁
行測總結筆記 學霸筆記 必過_第4頁
行測總結筆記 學霸筆記 必過_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、現(xiàn)在開始資料分析之所以把資料分析放在第一,是因為本人以前最怕資料分析不難但由于位于最后,時間緊加上數(shù)字繁瑣,得分率一直很低。而各大論壇上的普遍說法是資料分析分值較高,不可小覷。有一次去面試,有個行測考90分的牛人說他拿到試卷先做資料分析,我也試過,發(fā)覺效果并不好,細想來經(jīng)驗因人而議,私以為資料分析還是應該放在最后,只是需要保證平均5分鐘一篇的時間余量,膽大心細。一、 基本概念和公式1、 同比增長速度(即同比增長率)=(本期數(shù)-去年同期數(shù))/去年同期數(shù)x100%=本期數(shù)/去年同期數(shù)-1顯然后一種快得多 環(huán)比增長速度(即環(huán)比增長率)=(本期數(shù)-上期數(shù))/上期數(shù)=本期數(shù)/上期數(shù)-12、 百分數(shù)、百分

2、比(略)3、 比重(略)4、 倍數(shù)和翻番翻番是指數(shù)量的加倍,翻番的數(shù)量以2n次變化5、 平均數(shù)(略)6、 年均增長率如果第一年的數(shù)據(jù)為A,第n+1年為B二、 下面重點講一下資料分析速算技巧1、 a=b÷(1+x%)b×(1-x%)結果會比正確答案略小,記住是略小,如果看到有個選項比你用這種方法算出來的結果略大,那么就可以選;比它小的結果不管多接近一律排除;x越小越精確a=b÷(1-x%)bX(1+x%)結果會比正確答案略小,x越小越精確特別注意:當選項差距比較大時,推薦使用該方法,當差距比較小時,需驗證增長率或者負增長率大于10%,不適用此方法2、 分子分母比較法

3、分子大分母小的分數(shù)大于分子小分母大的分數(shù)差分法若其中一個分數(shù)的分子和分母都大于另外一個分數(shù)的分子和分母,且大一點點時,差分法非常適用。例:2008年產(chǎn)豬6584頭,2009年產(chǎn)豬8613頭,2010年產(chǎn)豬10624頭,問2009與2010哪一年的增長率高答:2009增長率8613/6584-1 ,2010增長率10624/8613-1,-1不用看,利用差分法(10624-8613)/(8613-6584)=2047/2029顯然8613/6584 所以10624/8613<8613/6584我們把分子、分母都比較小叫做小分數(shù),分子、分母都比較大的叫做大分數(shù),(大分子-小分子)/(大分母-

4、小分母)所得的分數(shù)叫做差分數(shù)。差分法的原理:我們假設小分數(shù)代表一種某濃度的溶液A,差分數(shù)代表另一種濃度的溶液B,大分數(shù)代表A和B的混合溶液,若差分數(shù)小于小分數(shù),即B的濃度小于A,那么混合后所得的溶液濃度必然小于A,即大分數(shù)小于小分數(shù)。反之亦然。結論差分數(shù)實際上是在代替大分數(shù)跟小分數(shù)比較若差分數(shù)大于小分數(shù),則大分數(shù)大于小分數(shù)若差分數(shù)等于小分數(shù),則大分數(shù)等于小分數(shù)若差分數(shù)小于小分數(shù),則大分數(shù)小于小分數(shù)3.年均增長率的簡化算法X(b/a-1)/n,a是基數(shù),b表示經(jīng)過n年注意正確答案略小于(b/a-1)/n4估值計算 尾數(shù)法 應用條件:當題目所給的選項尾數(shù)不同時,可用于排除干擾項 首數(shù)法 應用條件:

5、當題目所給的選項前幾個數(shù)位不同時,可用于排除干擾項 取整法 當計算中遇到帶有多位有效數(shù)字的數(shù)據(jù)時,我們可以將其個位、十位或者百位以下的數(shù)據(jù)根據(jù)具體情況進行舍位應用條件:取整法主要用于乘除計算,數(shù)據(jù)取整后計算所產(chǎn)生的誤差應遠小于選項間的差距。 誤差估值:當除法分母擴大或者縮小且分子大于1時,我們可以用分子乘以擴大或者縮小的值與原來的數(shù)的差距來估計誤差 范圍限定法:根據(jù)題干所列出的式子,將其進行放縮舉例:1439996可以縮放為1440000注意:務必在適當?shù)姆秶锓趴s,切忌放縮范圍過大,導致錯誤5、數(shù)字特性法(1)分母小于10的一些基本分數(shù) 1/2=0.5 1/30.333 2/30.667 1

6、/4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6 4/5=0.8 1/60.167 1/70.143 1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/90.111 2/90.222 4/90.444 5/90.556 7/90.778 8/90.889(2)5的奇數(shù)數(shù) 5=10/2 15=30/2 35=70/2 175=700/4 225=900/4(3) 25的奇倍數(shù) 25=100/4 75=300/3 175=700/4 225=900/4(4) 125的奇倍數(shù) 125=1000/8 375=3000/8 625=500

7、0/8 875=7000/8具體運用方法,舉個列子,225x17=900x17/4=38257、 運算拆分法將一個拆分成兩個或者兩個以上容易計算的數(shù)的和或者差的形式三、 個人在做題過程中的一些經(jīng)驗積累 做題的過程中一定要注意觀察選項,一般算出前兩位答案就可以選了 做題先看題目再看資料,帶著題目找資料信息,悶頭看資料就是浪費時間 特別注意百分點和百分比的區(qū)別,多(少)5個百分點跟多5%不是一個概念 定期做一定數(shù)量的資料分析,熟能生巧,熟練和直覺很重要 對于文字過多,要算的數(shù)值過多的綜合類題目可以適當放棄數(shù)字推理一、 基本類型1、 等差數(shù)列及其變式(主要考查三級等差數(shù)列及其變式)2、 等比數(shù)列及其

8、變式3、 和數(shù)量及其變式4、 積數(shù)列及其變式(出現(xiàn)頻率相對不高)5、 多次方數(shù)列及其變式(弱項,特別需要重視)(1) 以題干中的多次方數(shù)或者多次方數(shù)附近的數(shù)為突破口,這是解決平方數(shù)列變式、立方數(shù)列變式、多次方數(shù)列的關鍵(2) 當題干數(shù)字出現(xiàn)0或者1的時候,數(shù)字推理規(guī)律與多次方相關的可能性較大6、 分式數(shù)列(必考題型,難度較大)(1) 首先采用作差、作積、作商等方式快速處理題干數(shù)字,觀察是否存在基本數(shù)列或者基本數(shù)列變式(2) 在考慮分子、分母分別綜合變化時,多數(shù)情況下需要對某些項進行改下,有意識地構造基本數(shù)列,猜證結合。7、 組合數(shù)列8、 圖形形式數(shù)字推理 奇數(shù)法則(1) 如果一個圓圈中有奇數(shù)個

9、奇數(shù),那么這道題通常無法僅僅通過“加減”來完成,一般優(yōu)先考慮乘除(2) 如果每個圓圈中有偶數(shù)個奇數(shù),一般從簡單的加減入手(3) 中心數(shù)字不易分解,應當優(yōu)先考慮“先乘除后加減”9、其他數(shù)列,如根號數(shù)列、階乘數(shù)列、質合數(shù)列及其變式等二、 做好數(shù)字推理必備的基本功1、 多次方表(滾瓜爛熟)22=432=942=1652=2562=3672=4982=6492=81102=10023=833=2743=6453=12563=21673=34383=51293=729103=100024=1633=8144=25654=62564=129625=3235=24345=102455=312526=6436

10、=72927=12828=25629=512210=1024112=121122=144132=169142=196152=225162=256172=289182=324192=361212=441222=484232=529242=576252=625262=676272=729282=784292=841注意紅色的數(shù)字,因為不唯一,很容易考到特別注意的一類問題:12+22=5 32+42=25 52+62=61 72+82=113 92+102=181其他還有很多形式,比如多次方和質數(shù)、合數(shù)的組合,和自然數(shù)的組合等等2、 ??紨?shù)拆分表6=2x312=2x612=3x416=2x818=2

11、x920=2x1020=4x521=3x727=3x930=5x630=6x532=4x835=5x748=4x1248=3x1672=8x956=7x860=4x1580=4x2091=7x13105=7x15259=7x37119=7x17117=9x13紅色字體的不容易看出來3階乘2!=23!=64!=245!=1206!=7207!=50408!=403209!=36288010!=362880011!=399168004、質數(shù)和合數(shù)質數(shù)列:2,3, 5,7, 11, 13, 17, 19, 23, 29, 31 特征(1)相鄰兩項相乘得到:6,15,35,77,143 (2)相鄰兩項

12、作差得:1,2,2,4,2,4,2,4,6,2 (3)作差后大小相差在6以內(nèi),也就是說拿到一個數(shù)列作差在6以內(nèi),無其他明顯特征,就可以考慮質數(shù)列合數(shù)列:4,6, 8, 9,10, 12, 14, 15, 16, 18, 20 特征(1)相鄰兩項相乘得:24,48,72,90,120,168 (2)相鄰兩項作差得:2,2,1,1,2,2,1,1,2,2,2,2 (3)作差后相差在2以內(nèi),比較相近質數(shù)和合數(shù)組合: 相加:6,9,13,16,21,25,31 相乘:8,18,40,63,110,1565、構造法 設a,b,c,d分別代表數(shù)列中連續(xù)四項,n為常數(shù)或者項數(shù)(1) 加減結構形式c=a+b,

13、 c=(a+b)±n,d=a+b+c等(2) 除結構形式 c=(a+b)/2, c=a+b/2, c=(a+b)/3等(3) 乘結構形式 c=axb c=axb±常數(shù),d=axb, c=axb/2,c=axn+b, c=a+bxn,a=2b+c,c=(b-a)xn, c=(a-b)xn a=2b±n等(4) 多次方結構形式 c=(a+b)2, c=a2+b, b=a2±n, c=b2+2a, c=(a-b)2三、 個人對數(shù)字推理的一點心得體會 數(shù)字推理歸納得再多對實際做題也無太大裨益,關鍵在于一個練字,多練把不會的題目摘下來,過段時間拿出來做一下,反復多

14、次就可以提高 考場上要沉著冷靜,拿到題目,先作常規(guī)處理,猜證結合 實在沒有思路的題目,可以根據(jù)趨勢判斷,共同性尋找等方法猜出答案 數(shù)學運算一、 數(shù)的整除性質1. 整除的性質(1) 如果a和b都能被c整除,那么a+b與a-b能被c整除,如3,6能被3整除,那么他們的和9,差3也能被3整除(2) 如果a同時被b與c整除,c是任意整數(shù),那么積ac也能被b整除(3) 如果a能被b整除,并且b與互質,那么a一定能被積bc整除,反過來,如果a能被bc整除,則a能同時被b與c整除整除實戰(zhàn)注意事項(1) 運算中涉及人、物、產(chǎn)品的數(shù)量,這個數(shù)肯定是整數(shù),因為人、物、產(chǎn)品不可能出現(xiàn)一半或者幾分之幾(2) 任意連續(xù)

15、三個自然數(shù)之和或者積能被3整除(3) 一個數(shù)如果不能被3.7.11整除,則商是無窮小數(shù)一些常用數(shù)字的整除2,4,8整除及余數(shù)判定基本法則1、一個數(shù)能被2或5整除,當且僅當其末一位數(shù)能被2或5整除2、一個數(shù)能被4或者25整除,當且僅當其末兩位數(shù)能被4或者25整除3、一個數(shù)能被8或125整除,當且僅當其末三位數(shù)能被8或者125整除4、一個數(shù)被2或者5除得的余數(shù),就是其末一位數(shù)被2或5除得的余數(shù)5、一個數(shù)被4或者25除得的余數(shù),就是其末兩位數(shù)被4或者25除得的余數(shù)6、一個數(shù)被8或者125除得的余數(shù),就是其末三位數(shù)被8或者125除得的余數(shù)3,9整除及余數(shù)判定基本法則1、一個數(shù)被3整除,當且僅當其各位數(shù)

16、之和能被3整除2、一個數(shù)被9整除,當且僅當其各位數(shù)之和能被9整除3、一個數(shù)被3除得的余數(shù),就是其各位數(shù)之和被3除得的余數(shù)4、一個數(shù)被9除得的余數(shù),就是其各位數(shù)之和被9除得的余數(shù)7整除判定基本法則1、一個數(shù)是7的倍數(shù),當且僅當其末一位的兩倍,與剩下的數(shù)之差為7的倍數(shù)2、一個數(shù)是7的倍數(shù),當且僅當其末三位數(shù),與剩下的數(shù)之差為7的倍數(shù)11,13整除判定基本法則1、一個數(shù)是11的倍數(shù),當且僅當奇數(shù)位之和與偶數(shù)位之和作的差為11的倍數(shù)2、一個數(shù)是11的倍數(shù),當且僅當其末三位數(shù)與剩下的數(shù)之差為11的倍數(shù)3、一個數(shù)是13的倍數(shù),當且僅當其末三位數(shù)與剩下的數(shù)之差為13的倍數(shù)2秒殺實戰(zhàn)(1) 百分比類題秒殺 百

17、分比類題秒殺利用的就是題中涉及人、物、產(chǎn)品等的數(shù)量都是整個的情況。通過已知題目信息,能夠得出所求的答案應該被某個數(shù)整除,列如,該產(chǎn)品比上年減少40%,求今年該產(chǎn)品有多少?設去年為x,那么今年應該有(1-40%)x=60%x=3/5x,即答案肯定是能被3整除,若題目求去年x, 那么x一定能被5整除例題1:某高校2009年度畢業(yè)生7650名,比上年增長了2%,其中本科畢業(yè)生比上年度減少2%,而研究生比上年度增加了10%,這所高校今年畢業(yè)的本科生有()人A3920 B4410 C4900 D5490秒殺實戰(zhàn):設去年研究生為A,本科生為B,那么今年的研究生為1.1A, 本科生為0.98B1.1A 里含

18、有11的因子,0.98B里面含有98的因子,所以研究生應該是11的整數(shù)倍,本科生應該是98的整數(shù)倍,所以答案是C,可以進一步驗證研究生人數(shù)為7650-4900=2750,是11的倍數(shù)。(2) 分數(shù)類題秒殺實戰(zhàn)方法 分數(shù)類題當中會帶有分數(shù),我們需要注意的是答案與分數(shù)的關系,如產(chǎn)品a占產(chǎn)品總數(shù)的1/3,求產(chǎn)品的總數(shù)一定能被3整除A是b的1/2,說明b能被2整除,a+b的和是3的倍數(shù)A是b的1/3,說明b能被3整除,a+b的和是4的倍數(shù)A是b的1/4,說明b能被4整除,a+b的和是5的倍數(shù)(a,b,c均為人、物、產(chǎn)品等的數(shù)量,由于此類物質具有不可分割性,故數(shù)量一定是整數(shù)) 例題2 甲乙兩人的月收入都

19、是四位數(shù),大于等于1000元,小于10000元,已知甲月收入的2/5和乙月收入的1/4正好相等,甲、乙兩人的月收入最大相差是多少元? ()A3216 B3665 C3720 D3747 秒殺實戰(zhàn):2/5、 1/4通分后為8/20,5/20.兩者相減:8/20-5/20=3/20,所以兩者相差的收入含有3因子,即答案能被3整除,題中求的是最大相差,只需從最大的數(shù)開始驗證是否被3整除,3747=3+7+4+7=21,21能被3整除,答案D(3)倍數(shù)相關類題秒殺如果通過已知信息得到答案應是某個數(shù)的倍數(shù),選項ABCD中僅有某一選項含有該數(shù)因子,則該選項就是答案,如果有兩個選項都含有該數(shù)的因子,則要通過

20、代入進行排除例題3 在自然數(shù)1至50中,將所有不能被3除盡的數(shù)相加,所得的和是()A865 B866 C867 D868秒殺實戰(zhàn)方法 根據(jù)整除性質:如果a與b都能被c整除,那么a+b與a-b也能被c整除,自然數(shù)1至50的和為Sn=n(a1+a2)/2=50x(1+50)=50x51/2,51能被3整除,說明Sn是能被3整除的,所以當1至50的和減去所有能被3整除的數(shù)的和,其結果能被3整除,只有C符合(4) 余數(shù)類題秒殺對于同一個除數(shù)m,兩個數(shù)和的余數(shù)和余數(shù)的和同余,兩個數(shù)差的余數(shù)和余數(shù)的差同余,兩個數(shù)積得余數(shù)與余數(shù)的積同余。有一類常見問題:有一個數(shù),除以a1余b1,除以a2余b2,除以a3余b

21、3問在某個范圍內(nèi)(如一個n位數(shù),一個數(shù)小于10000等)這樣的數(shù)有多少個?一種方法 是用同余問題核心口訣同余問題核心口訣:同余取余,和同加和,差同減差,公倍數(shù)作周期 余同“一個數(shù)除以4余1,除以5余1,除以6余1”則取1,表示為60n+1 和同“一個數(shù)除以4余3,除以5余2,除以6余1”則取7,表示為60n+7 差同“一個數(shù)除以4余1,除以5余2,除以6余3”則取-3,表示為60n-3另一種方法是用萬能公式: 這個范圍內(nèi)最大的數(shù)除以或干個除數(shù)的積,如果余數(shù)大于最小符合數(shù)則商加1,如果余數(shù)小于最小符合數(shù)則不加(一般情況下余數(shù)大于200直接加1) 注:最小符合數(shù)是指這個范圍內(nèi)符合題意的最小數(shù)例題4

22、一個三位數(shù)除以9余數(shù)為7,除以5余數(shù)為2,除以4余數(shù)為3,這樣的數(shù)有幾個?實戰(zhàn)秒殺 1000/(9x5x4)=5100,最小符合數(shù)從最大被除數(shù)代入計算,即從除以9余7入手,9N+7代入驗證,當N=0時,7代入符合除以5余數(shù)為2,除以4余數(shù)為3的條件,說明最小符合數(shù)為7,余數(shù)100>最小符合數(shù)7,所以需要加1,這樣的數(shù)有5+1=6個(5) 奇偶性質類題秒殺奇偶法則核心公式兩個奇數(shù)之和/差為偶數(shù),兩個偶數(shù)之和/差為偶數(shù),一奇一偶之和/差為奇數(shù)兩個數(shù)的和/差為奇數(shù),則他們的奇偶相反,兩個數(shù)的和/差為偶數(shù),則它們奇偶相同。 連個數(shù)的和為奇數(shù),則差也為奇數(shù),兩個數(shù)的和為偶數(shù),則其差也為偶數(shù)例題5:

23、已知三個連續(xù)自然數(shù)依次是11,9,7的倍數(shù),并且都在500和1500之間,那么這三個數(shù)的和事多少?秒殺實戰(zhàn) 連續(xù)三個自然數(shù)之和是3的倍數(shù),設三個數(shù)是x-1,x,x+1,則和為3x.三個連續(xù)自然數(shù)依次是11,9,7的倍數(shù),所以x是9的倍數(shù),得3x是27的倍數(shù),代入只有B符合(6) 濃度傾向判斷典型問題:假設一個容器里有若干千克鹽水,往容器里加入一些水,溶液濃度為10%,再加入同樣多的水,溶液濃度為8%,問第三次加入同樣多的水,這時溶液濃度是多少?設濃度為x,傾向性分析 10%8%(x6%),每次減小2%,按照每次減2%的傾向,則x的值的范圍是6%x7%(7%是原來x的值加上傾向的一半即6%+2%

24、/2=7%)假設一個容器里有若干千克鹽水,蒸發(fā)掉部分水以后,溶液濃度為10%,再蒸發(fā)掉同樣多的水,溶液濃度為12%,問第三次蒸發(fā)同樣多的水,這時溶液濃度是多少?設濃度為x,傾向性分析 10%12%(x14%),每次增加2%,按照每次增加2%的傾向,則x的值的范圍是14%x15%(15%是原來x的值加上傾向的一半即14%+2%/2=15%)濃度傾向核心口訣:每次濃度減小那么其變化幅度會更小,每次濃度加大那么變化幅度會更大。二、數(shù)學運算1、一些基本的算法(1)輾轉相除法,用來求大數(shù)之間的最大公約數(shù)舉例:求414與378的最大公約數(shù)414÷378=136取余數(shù)36和378進行計算378&#

25、247;36=1018取余數(shù)18和除數(shù)36進行計算36÷18=2無余數(shù),則除數(shù)18為414和378的最大公約數(shù)(2)棄九法把一個數(shù)的各位數(shù)字相加,直到和事一個一位數(shù)(和是9,就要減去9得0),這個書就叫原數(shù)的棄九數(shù)。與尾數(shù)法類似,兩個數(shù)的棄九數(shù)之和等于和的棄九數(shù),兩個數(shù)的棄九數(shù)之差等于差的棄九數(shù),兩個數(shù)棄九數(shù)之積等于積得棄九數(shù)??梢杂脕砗喕恍碗s的計算。棄九數(shù)法本質上是原數(shù)除以9的余數(shù)棄九數(shù)法不適用于除法。(3)乘方尾數(shù)核心口訣底數(shù)留個位指數(shù)末兩位除以4留余數(shù)(余數(shù)為0,則看作4)注:尾數(shù)為0,1,5,6的數(shù),乘方尾數(shù)不變(4)裂項相加法依據(jù)兩項分母裂項公式b/mx(m+a)=(1

26、/m-1/(m+a)xb/a可得:b/mx(m+a) + b/(m+a)x(m+2a) + b/(m+a)(m+3a) +.+b/(n-a)xn=(1/m-1/n)xb/a依據(jù)三項分母裂項公式b/m(m+a)(m+2a)=(1/m(m+a)-1/(m+a)(m+2a)xb/2a可得:b/m(m+a)(m+2a) + b/(m+a)(m+2a)(m+3a)+b/(n-2a)(n-a)n=(1/m(m+a)-1/(n-a)n)xb/2a(5)循環(huán)數(shù)轉化 我們把類似于20022002或者198198198這樣的數(shù)叫做循環(huán)數(shù),一定要熟悉掌握這類數(shù)的因式分解,比如198198198=198x100100

27、1,注意數(shù)清楚位數(shù)2、必備的公式與結論圖形推理規(guī)律推理一:數(shù)量類識別方法,如果某道題組成元素凌亂,那么可以判斷為數(shù)量類規(guī)律推理1、 點,主要是指線與線之間的交點數(shù)。包含交點、切點、割點。 識別交點的方法:一般具有一條明顯的割線,可以得到一組清晰地交點,幾幅圖外形比較相似。2、 線 圖形中包含有“線”的要素,蘊含著線條數(shù)、線頭數(shù)、筆畫數(shù)的變化 特別注意,國家公務員考試中,線數(shù)量僅僅包含線條段,不包括圓形和曲線,但在地方公務員考試中有時包括圓和曲線的,要按情況而定。3、“面”的考察內(nèi)涵不斷豐富,既可以定義為內(nèi)外圖形相交得出的部分,也可以定義為面積4、素 是指圖形中常常包含“素”的要素,蘊含著元素的

28、種類,數(shù)目變化,既包含了圖形整體的變化,又包含各組成部分的變化。 近年來的公務員考試中,常常出現(xiàn)兩種元素在圖形中存在等價關系的一類題目,可以稱為“一個頂倆” 點、線、面、素綜合解題方法 第一步,首先從整體數(shù)考慮,識別點線面素,確定數(shù)量規(guī)律 第二步,如果整體不行,可以從部分(分位置或者樣式)的角度確定數(shù)量得出規(guī)律二圖形推理四大能力培養(yǎng)(一) 觀察能力觀察圖形考慮一以下七大要素1、 開放圖形或封閉圖形2、 直線圖形或者曲線圖形3、 對稱圖形或者非對稱圖形4、 線條數(shù)5、 交點數(shù)6、 封閉區(qū)域數(shù)7、 圖形種類數(shù)和部分數(shù)(二) 辨別能力圖形之間的相同點和不同點,主要表現(xiàn)在以下三個方面:1、 圖形的外部

29、整體特征2、 圖形的內(nèi)部構成特征3、 圖形中元素的位置關系(三) 推理能力 推理有兩種形式1、 由所有圖形都具有某些共同點推知未知圖也應具備這些共同點2、 由所有圖形在某方面具有連續(xù)性的規(guī)律推知未知圖形應具有的特征(四) 想象能力 空間想象能力主要體現(xiàn)在以下幾個方面:1、 根據(jù)立體圖形的平面展開圖,判斷其中某些面的位置關系2、 根據(jù)立體圖形,判斷其平面展開圖中某些面的位置關系3、 由立體圖判斷與其對應的三視圖三維空間認識規(guī)律1、平面圖形中相鄰的兩個面拆成立體圖形也相鄰2、立體圖形中相對的兩個面拆成平面圖形后不相鄰三、圖形推理的五大分析方法1、特征分析法特征圖形分析 特征元素分析正確地應用特征分

30、析法應注意:并不是所有題干都存在特征圖形,使用時應該注意與排除法等其他方法的結合2、求同分析法圖形的特征屬性求同 圖形的構成元素求同應用求同分析法解決九宮格圖形推理時通常三種形式:每行求同法 每列求同法 整體圖形求同3、對比分析法對比尋找細微差異 對比尋找轉化方式4、 位置分析法組合圖形中小圖形的相對位置 同一圖形的旋轉、翻轉四、圖形推理六大規(guī)律及考點(一)圖形的幾何特征1、一筆畫凡是由偶點組成的連通圖一定可以一筆畫凡是只有兩個奇點組成的連通圖,一定可以一筆畫2、直線圖和曲線圖形3、 圖形的對稱性4、 圖形的開放性和封閉性5、 圖形的其他幾何特征 圖形的凹凸性:在封閉圖形內(nèi)部,若存在兩點,連接

31、這兩點的線段與圖形邊界有交點,則稱為凹圖形 重心 面積和體積(二)圖形中的數(shù)量關系1、筆畫數(shù)與線條數(shù) 包括相等或者每行每列之和是常數(shù)2、封閉區(qū)域數(shù) 包括相等或者每行每列之和是常數(shù)3、圖形部分數(shù)4、圖形種類數(shù)5、圖形中特殊元素的個數(shù)6、數(shù)量轉化(三)圖形中的相對位置1、兩個圖形相接或者兩個圖形想離2、圖形間相對位置變化3、圖形間的其他位置變化(四)圖形中的旋轉、移動和翻轉1、線條組合2、片塊組合3、去同存異、去異存同(六)圖形的空間形式推理我在做題過程中的一些總結1、首先要打破思維定勢,不要鉆牛角尖2、對稱軸,特別注意有幾條對稱軸,橫的還是豎的3、元素種類和各種的合計數(shù),算合計數(shù)時有時是不同形狀

32、的,要特別注意4、遵循一定疊加規(guī)律的問題要耐心仔細,也有一行或者一列疊加起來的陰影數(shù)時一個常數(shù)5、一行一列的線段,封閉區(qū)域等可以是自然數(shù),但不按大小排列6、面積問題,1,1/2,1/3,1/4等7、點數(shù)和線段和,線段與封閉區(qū)域成一定關系8、在考慮行的同時不要忽略了列9、其他都不成規(guī)律的時候,可以考慮一下有曲有直10、對稱軸與凹凸圖形的組合 邏輯判斷一必然性推理攻略(一) 找突破口,一般以矛盾為突破口(二) 排除法(三) 代入法(相當有用)(四) 假設法(五) 圖表法(六) 排序法詞項的周延性由直言命題的聯(lián)項和量項來決定主項的周延性由量項來決定,量項是全程的則主項周延,量項是特稱的則主項不周延謂

33、項的周延性由聯(lián)項來決定,聯(lián)項是否定的謂項周延,聯(lián)項是肯定得則謂項不周延對當關系1、 矛盾關系具有矛盾關系的兩個命題之間不能同真(必有一假),也不能同假(必有一真) “所以S都是P”和“有些S不是P” “所有S都不是P”和“有些是P” “某個S是P”和“某個S不是P”2、 下反對關系具有下反對關系的兩個命題之間不能同假(必有一真),但可以同真“有些S是P”和“有些S不是P”“某個S不是P”和“有些S不是P”“某個S是P”和“有些S不是P”3、 反對關系具有反對關系的兩個命題之間不能同真(必有一假),但可以同假,具有反對關系的直言命題有:“所有S都是P”和“所有S都不是P”“所有S都是P”和“某個

34、S不是P”“所有S都不是P”和“某個S是P”4、 從屬關系從屬關系也稱等差關系,具有從屬關系的兩個命題之間可以同真,也可以同假推理規(guī)則聯(lián)言命題(p并且q)全部肢命題為真,則聯(lián)言命題為真聯(lián)言命題為真。則其中任一肢命題為真選言命題P或者q(相容選言)肯定一部分選言肢,不能否定其余選言肢否定一部分選言肢,可以肯定其余選言肢要么p,要么q(不相容選言)肯定一個選言肢,就否定其余選言肢否定一個選言肢以外的所有選言肢,就能肯定未被否定的那個假言命題如果p,那么q肯定前件就否定后件,否定后件就否定前件否定前件不能否定后件,肯定后件不能肯定前件只有p,才能q否定前件就能否定后件,肯定后件就能肯定前件肯定前件不

35、能肯定后件,否定后件不能否定前件p當且僅當q肯定前件就能肯定后件,否定前件就能否定后件肯定后件就能肯定前件,否定后件就能否定前件各種復言命題的負命題原命題負命題P并且q張三和李四是學生非p或者非q張三不是學生或者李四不是學生或者p或者q她或者是演員,或者是畫家非p并且非q她既不是演員也不是畫家要么p要么q這幅要么是唐代的,要么是宋代的P并且或者非p并且非q這幅畫既是唐代的又是宋代的這幅畫既不是唐代的也不是宋代的如果p,那么q倘若沒有水,生命就會死亡P并且非q沒有水,但是生命沒有死亡只有p,才q只有你來,我才會高興非p并且q你不來但我很高興當且僅當p才q并非pP并且非q或者非p并且qp充分條件假

36、言命題與選言命題轉化“如果p,那么q”的等值命題就是“非p或q”必要條件假言命題的選言命題轉化“只有p,才q”的等值命題是“p或者非q”二難推理二難推理,也稱假言選言推理,它是由兩個假言命題和一個選言命題做前提,推出結論的推理,它常常使人陷入左右為難,進退維谷的境地簡單構成式簡單破壞式一般形式特例一般形式特例如果p,那么q如果r,那么q如果p,那么q如果非p,那么q如果p,那么q如果p,那么r如果p,那么q如果p,那么非qP或r所以q所以q非q或非r所以非p所以非p模態(tài)命題邏輯中,“必然”“可能”“不可能”等叫模態(tài)詞不必然=可能不不必然=可能不可能=必然不不可能不=必然假言連鎖推理充分條件假言連鎖推理必要條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論