




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、牛頓運動定律(a)李仕才牛頓運動定律(一)1(2018·浙江4月學考·19)可愛的企鵝喜歡在冰面上玩游戲如圖1所示,有一企鵝在傾角為37°的傾斜冰面上,先以加速度a0.5 m/s2從冰面底部由靜止開始沿直線向上“奔跑”,t8 s時,突然臥倒以肚皮貼著冰面向前滑行,最后退滑到出發(fā)點,完成一次游戲(企鵝在滑動過程中姿勢保持不變)若企鵝肚皮與冰面間的動摩擦因數(shù)0.25,已知sin 37°0.6,cos 37°0.8,g10 m/s2.求:圖1(1)企鵝向上“奔跑”的位移大?。?2)企鵝在冰面上滑動的加速度大??;(3)企鵝退滑到出發(fā)點時的速度大小(計算
2、結(jié)果可用根式表示)答案(1)16 m(2)8 m/s24 m/s2(3)2 m/s解析(1)在企鵝向上“奔跑”過程中:xat2,解得x16 m.(2)在企鵝臥倒以后將進行兩個過程的運動,第一個過程是從臥倒到最高點,第二個過程是從最高點滑到出發(fā)點,兩次過程根據(jù)牛頓第二定律分別有:mgsin 37°mgcos 37°ma1mgsin 37°mgcos 37°ma2解得:a18 m/s2,a24 m/s2.(3)企鵝從臥倒滑到最高點的過程中,做勻減速直線運動,設(shè)時間為t,位移為xt,xa1t2,解得:x1 m.企鵝從最高點滑到出發(fā)點的過程中,設(shè)末速度為v,初速
3、度為0,則有:v2022a2(xx)解得:v2 m/s.2.(2018·浙江6月學考·22)某校物理課外小組為了研究不同物體水下運動特征,使用質(zhì)量m0.05 kg的流線型人形模型進行模擬實驗,如圖2所示實驗時讓模型從h0.8 m高處自由下落進入水中假設(shè)模型入水后受到大小恒為ff0.3 n的阻力和f1.0 n的恒定浮力,模型的位移大小遠大于模型長度,忽略模型在空氣中運動時的阻力,試求模型:(重力加速度g取10 m/s2)圖2(1)落到水面時速度v的大?。?2)在水中能到達的最大深度h;(3)從開始下落到返回水面所需時間t.答案(1)4 m/s(2)0.5 m(3)1.15 s
4、解析(1)忽略空氣阻力,模型做自由落體運動,有mghmv2即v4 m/s.(2)在水中加速度大小a16 m/s2,則根據(jù)勻變速直線運動規(guī)律v22ah,可知h0.5 m.(3)落水之前的時間t10.4 s在水中下降的時間t20.25 s在水中上升時,由牛頓第二定律有:fmgffma解得a4 m/s2所以t3 0.5 s所以總時間為tt1t2t31.15 s.3.(2016·浙江10月學考·19)如圖3所示,在某段平直的鐵路上,一列以324 km/h高速行駛的列車某時刻開始勻減速行駛,5 min后恰好停在某車站,并在該站停留4 min,隨后勻加速駛離車站,經(jīng)8.1 km后恢復到
5、原速324 km/h.(g取10 m/s2)圖3(1)求列車減速時的加速度大?。?2)若該列車總質(zhì)量為8.0×105 kg,所受阻力恒為車重的0.1倍,求列車駛離車站加速過程中牽引力的大?。?3)求列車從開始減速到恢復原速這段時間內(nèi)的平均速度大小答案(1)0.3 m/s2(2)1.2×106 n(3)108 km/h解析(1)v0324 km/h90 m/s由運動學公式vv0a1t1可得a10.3 m/s2,負號表示加速度方向與初速度方向相反(2)由運動學公式v022a2x可得a20.5 m/s2由牛頓第二定律可得f牽f阻ma2f阻0.1mg聯(lián)立解得:f牽1.2×
6、106 n.(3)列車減速行駛的時間t1300 s列車減速行駛的位移x1v0t1a1t1213 500 m列車在車站停留t2240 s列車加速行駛的時間t3180 s列車加速行駛的位移x28 100 m30 m/s108 km/h.4(2018·新昌中學適應性考試)如圖4所示,水平地面上ab長為20 m,bc部分為減速緩沖區(qū),地面由特殊材料鋪設(shè)而成,在地面a處放上質(zhì)量m5 kg的箱子(可視為質(zhì)點),并給箱子持續(xù)施加水平方向f28 n的推力后,箱子由靜止開始運動已知箱子與地面ab間的動摩擦因數(shù)10.4,重力加速度g10 m/s2.圖4(1)求箱子由a運動到b過程中的加速度大小;(2)求
7、箱子由a運動到b所用的時間;(3)若箱子與bc間的動摩擦因數(shù)20.40.1l(式中l(wèi)為箱子在bc部分所處的位置離b點的距離),則箱子沿水平面運動到距離b點多遠時速度最大?答案(1)1.6 m/s2(2)5 s(3)1.6 m解析(1)對箱子,由牛頓第二定律得fffma又有ff1mg解得a1.6 m/s2.(2)據(jù)運動學公式有xabat2,解得t5 s.(3)箱子所受合力為零時,速度最大,即f2mg0又20.40.1l,解得l1.6 m即箱子沿水平面運動到距離b點1.6 m時速度最大5.航天飛機著陸時速度很大,可以用阻力傘使它減速,如圖5所示假設(shè)一架質(zhì)量為m的航天飛機在一條水平直跑道上著陸,著陸
8、時速度為v0,著陸的同時立即打開阻力傘,減速過程經(jīng)歷時間為t,假定航天飛機著陸過程中所受阻力不變,問:圖5(1)這條跑道至少要多長?(2)著陸過程所受阻力是多大?答案(1)(2)解析(1)由xt可知,著陸過程中航天飛機的位移大小為x,因此這條跑道的長度l.(2)著陸過程中的加速度大小為a,由牛頓第二定律知,著陸過程中所受阻力ffma.6(2017·溫州市月考)如圖6為高速公路入口的簡化示意圖,駕駛員在入口a取卡處取得通行卡后,駕駛轎車由靜止開始勻加速通過水平直道ab,再沿上坡路段bc勻加速運動至c點進入高架主路(通過b點前、后速率不變)已知轎車和駕駛員的總質(zhì)量m2×103 kg,從a運動到b經(jīng)歷的時間t4 s,經(jīng)過b處的速度v110 m/s,bc段長l100 m,到達c處的速度v220 m/s.假設(shè)在行駛過程中受到的阻力ff大小恒定,且為2×103 n求:圖6(1)轎車在上坡路段bc運動的加速度a1的大??;(2)轎車在ab段運動的加速度a2的大小和牽引力f的大小答案(1)1.5 m/s2(2)2.5 m/s27×103 n解析(1)汽車在bc段上坡過程中做勻加速直線運動,根據(jù)位移和速度的關(guān)系可得vv2a1l,代入數(shù)據(jù)解得a11.5 m/s2.(2)根據(jù)加速度的定義可得a2 m/s22.5 m/s2,根據(jù)牛頓第二定律可得ff
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊樹人中學2025年初三下-第二次月考化學試題試卷含解析
- 現(xiàn)代教育技術(shù)教學理論
- 江西省景德鎮(zhèn)市樂平市達標名校2025屆初三下學期5月調(diào)研測試英語試題試卷含答案
- 母嬰產(chǎn)后護理培訓課件
- 高段創(chuàng)意美術(shù)課件
- 2025新入職工入職安全培訓考試試題含答案(黃金題型)
- 大班故事《奇妙的商店》教學設(shè)計
- 廉潔教育主題班會(二年級)
- 基于大數(shù)據(jù)分析的2025年奢侈品消費者行為與精準營銷策略報告
- 2025年中國火災報警系統(tǒng)市場調(diào)查研究報告
- 南京師范大學自主招生個人陳述范文與撰寫要點
- 廣州廣州市天河區(qū)華陽小學-畢業(yè)在即家校共話未來-六下期中家長會【課件】
- 公司事故隱患內(nèi)部報告獎勵制度
- 大學生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)(創(chuàng)新創(chuàng)業(yè)課程)完整全套教學課件
- GB/T 6283-2008化工產(chǎn)品中水分含量的測定卡爾·費休法(通用方法)
- GB/T 23468-2009墜落防護裝備安全使用規(guī)范
- 2023年北京亦莊國際投資發(fā)展有限公司招聘筆試題庫及答案解析
- ansys電磁場分析經(jīng)典教程
- 美國數(shù)學競賽AMC8講座課件
- 2020年國家義務教育質(zhì)量測查德育科目模塊一模擬試題含參考答案
- 導管固定-PPT課件
評論
0/150
提交評論