




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第1頁/共43頁 第2頁/共43頁 ( )()( )f xf xhf x0( )( )limxdff xfxdxx ( )()( )( )f xf xhf xfxxh第3頁/共43頁 ( )()( )dff xf xhf xdxxh( )( )()dff xf xf xhdxxh( )()()2dff xf xhf xhdxxh第4頁/共43頁 200001()()()()2!f xhf xhfxh fx200001()()()()2!f xhf xhfxh fx300002()()2()()3!f xhf xhhfxh fx第5頁/共43頁 20()/2!h fx302()/3!h fx22
2、211()( )( )()()2 ( )()xxxd fdfdfdxxdxdxf xhf xf xf xhhhhf xhf xf xhh前向差分前向差分第6頁/共43頁 (, , )( , , )uu xh y zu x y zxh222(, , )2 ( , , )(, , )uu xh y zu x y zu xh y zxh第7頁/共43頁22222( , )( , )x yF x yxy第8頁/共43頁 i-1ijj+1j-1i+1013421h2h3h4h012342100120303()()O hxhO hxh22231011122000112!3!hhhxxx第9頁/共43頁 2
3、22103013132001()()()()2!hhhhxx 22/ x222313210hhhh 2210303101300131 313()()()()()hhxhhhh hh 2242024024240()()()hhyh h hh第10頁/共43頁 222103013132001()()()()2!hhhhxx 31hh21030310130222131 3130()()()()22()hhxhhhh hh 第11頁/共43頁21032202xh13hhh21,1,1,1,4ijiji ji ji ji jh F1,1,1,1,40ijiji ji ji j第12頁/共43頁 i-1i
4、jj+1j-1i+1013421h2h3h4h01234abL2134204aaaaaah F1342040bbbbb1a3b (0,2,4)aibiii第13頁/共43頁 ababnn1313aaabbb2012341224 111baaKKh FKKK1a3b/abK12:()sBoundary n DD第14頁/共43頁 4a2134204aaaaaah F1342040bbbbb1a3b (0)aibiiii-1ijj+1j-1i+1013421h2h3h4h01234abLNM2b4a第15頁/共43頁 ababaaMaNbbMbNnni-1ijj+1j-1i+1013421abLN
5、M142322aaaMbbbN231422aaaNbbbM第16頁/共43頁 1a3b2b4a201423122()()4 111bbaaaKKh FKKK/abK第17頁/共43頁 第一類邊界條件的差分離散化第一類邊界條件的差分離散化 應用應用多元函數(shù)的泰勒公式多元函數(shù)的泰勒公式,結點結點1、3的位函數(shù)值和可通過的位函數(shù)值和可通過 表示為表示為以以h和和h1分別與以上兩式分別與以上兩式相乘且相加,削去一階相乘且相加,削去一階偏導項,偏導項,然后截斷與然后截斷與h的二次項,便得到關于結點的二次項,便得到關于結點0的二階偏導的二階偏導數(shù)的差分格式數(shù)的差分格式01342034 hD12 1h 2h
6、L02223101112200022231022000112!3!112!3!hhhxxxhhhxxx第18頁/共43頁 同理,在同理,在0結點處關于結點處關于y方向的二階偏導的差分格式方向的二階偏導的差分格式 代入給定的泊松方程,得到通常代入給定的泊松方程,得到通常第一類邊界條件第一類邊界條件的差分的差分格式格式 2111302110222hhhhxhhhh2222402220222hhhhyhhhh2123401111111(1)(1)112h F12/ ,/hhhh第19頁/共43頁 第三類邊界條件第三類邊界條件的差分離散化的差分離散化 第一種情況,當結點第一種情況,當結點剛好著落剛好著
7、落于邊界線于邊界線L上時,這還取決于邊上時,這還取決于邊界結點處的界結點處的外法線與網(wǎng)格線外法線與網(wǎng)格線重合,重合, 03 0 3 hDLnxy0301020( )( )f rfrh12( , )( , )Sf r tfr tn第20頁/共43頁 外法線與網(wǎng)格線不重合情況,邊界結點上的外向法向方外法線與網(wǎng)格線不重合情況,邊界結點上的外向法向方向與水平夾角為向與水平夾角為,其法向導數(shù)顯然是在,其法向導數(shù)顯然是在x和和y方向的導方向的導數(shù)在法向的數(shù)在法向的投影組合投影組合, 03 0 hDLn2 xy000302cossincossinnxyhh 300201020( )cossin( )f rf
8、rhh第21頁/共43頁 第二種情況,當結點不落于邊界線第二種情況,當結點不落于邊界線L上時,只需要上時,只需要引入引入于結點于結點0相關的邊界結點相關的邊界結點O,點的外方向,點的外方向n作為結點作為結點0處的處的“外方向外方向n”,且,且近似地認為近似地認為邊界條件中給定的函邊界條件中給定的函數(shù)和均在數(shù)和均在O點上的取值。這樣,此種情況下的點上的取值。這樣,此種情況下的第三類第三類邊界條件邊界條件的離散格式于式相似,的離散格式于式相似, o3 0 hDLn2 xyo300201020( )cossin( )f rf rhh第22頁/共43頁 第二類邊界條件第二類邊界條件的差分離散化的差分離
9、散化 第二類齊次邊界條件為第三類邊界條件的特殊情況,即。第二類齊次邊界條件為第三類邊界條件的特殊情況,即。我們這里討論最常見的一種情況我們這里討論最常見的一種情況 上面也是上面也是對稱邊界條件對稱邊界條件的離散公式的離散公式12( )( )0f rfr/0n 0134201234LhD20124124h F13第23頁/共43頁第24頁/共43頁離 散 化 場 域 ( 網(wǎng) 格 剖 分 )電 磁 場 問 題離 散 化 方 程 ( 差 分 原 理 )計 算 方 程 組 ( 迭 代 法 )差 分 方 程 組 ( 代 數(shù) 方 程 組 )離 散 解插 值 計 算 其 他 值 或 可 視 化 顯 示 結
10、果前 處 理數(shù) 據(jù) 計 算后 處 理第25頁/共43頁 i-1ijj+1j-1i+1(i,j)(i,j-1)(i,j+1)(i+1,j)(i-1,j)(i-1,j-1)(i-1,j+1)(i+1,j-1)(i+1,j+1)i increasej increase ( , )i j第26頁/共43頁21,11,1,2,1,121,1,1,1,21,11,1,2,1,1 44 i4 ijiji ji ji ji jijiji ji ji ji jijiji ji ji ji jh Fh Fjh F ncrease21,11,1,121,1,2,1,1,1,21,1112,1,1, 44 4i ji
11、 ji ji ji ji jijiji jijiji jii jijiji jji jh Fh Fh F increase j 第27頁/共43頁 . 0 1 0 0 0 . 0 1 -4 1 0 . . . 0 1 0 . . 0 1 0 0 . . 0 1 -4 1 0 . . 0 0 1 0 . . 0 1 0 . . . 0 1 -4 1 0 . 0 0 0 1 0 . 1,11,1,1,1,11,11,1,1 ijijiji ji ji jijijij= . . . . . . . . . . . .21,121,21,12,12,2,121,121,21,1 ijijiji ji
12、ji jijijijh Fh Fh Fh Fh Fh Fh Fh Fh Fiincreasej increasei*Ny+j+1i*Ny+ji*Ny+j-1i*Ny+j(i+1)*Ny+j(i-1)*Ny+ji*Ny+j-1i*Ny+j+1(i+1)*Ny+j-1(i+1)*Ny+j+1(i-1)*Ny+j-1(i-1)*Ny+j+1第28頁/共43頁第29頁/共43頁 21,1,1,1,12,1,11,1,414ijiji ji ji ji jnnnnni jiji jiji ji jh Fh F第30頁/共43頁1112,1,11,1,14nnnnni jiji jiji ji jh F第
13、31頁/共43頁 1, nnni ji ji ji j 112,1,11,1,14nnnni jiji jiji ji jh F112,1,11,1,44nnnnnni jiji jiji ji ji jh F第32頁/共43頁21 sin()bL22122bLm第33頁/共43頁 134222xyxyxyhh Eeeee134222mmmmmmmxyxyxyhhHeeee134222zzxyxyAAAAAAyxhh BAeeee第34頁/共43頁SKd PS1( )naviiKPi S 1( )naviiKPi SPUU第35頁/共43頁 Dxy0 a b 11020第36頁/共43頁 222200000000 ( , )010 xyx ay bx ay byx ax yDxy 第37頁/共43頁 Dij0 a b11020hh1,1,1,1,40ijiji ji ji j第38頁/共43頁 111,1,11,1,44nnnnnnni ji jiji jiji ji j0,0,00 ,011,0 10qpqppqand第39頁/共43頁 第40頁/共43頁 設 定 邊 值和 誤 差設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外語培訓機構智能學習方案
- 特殊教育教學案例范文
- 云計算數(shù)據(jù)審計與合規(guī)方案
- 四年級硬筆書法教材選擇計劃
- 建筑行業(yè)有限空間作業(yè)安全防護措施
- 2025-2030中國硬質豪華乙烯基瓷磚(LVT)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國硅錳合金行業(yè)發(fā)展分析及前景趨勢與投資風險研究報告
- 2025-2030中國番茄醬市場發(fā)展態(tài)勢及營銷渠道模式分析研究報告
- 人教版四年級英語安全教育計劃
- 私人游艇租賃安全保證合同
- 2024河北高考地理真題卷解析 課件
- 城市道路日常養(yǎng)護作業(yè)服務投標文件(技術方案)
- 《當前國際安全形勢》課件
- 3.1 貫徹新發(fā)展理念 課件-高中政治統(tǒng)編版必修二經(jīng)濟與社會
- 《互換性復習》課件
- 《光伏系統(tǒng)設計培訓》課件
- 設備的運行動態(tài)管理制度(4篇)
- 抖店仲裁申請書模板
- 借款利率協(xié)議
- 雞球蟲課件(共32張課件)《動物疫病防治》
- 2024年第三屆職業(yè)技能競賽(井下作業(yè)工賽項)理論考試題庫(含答案)
評論
0/150
提交評論