版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、不定積分西安PPT課件 歡 迎 大 家不定積分西安PPT課件不定積分西安PPT課件例例 xxcossin xsin是是xcos的的原原函函數(shù)數(shù). )0(1ln xxxxln是是x1在在區(qū)區(qū)間間), 0(內(nèi)內(nèi)的的原原函函數(shù)數(shù).如果在區(qū)間如果在區(qū)間I內(nèi),內(nèi),定義:定義:可可導(dǎo)導(dǎo)函函數(shù)數(shù))(xF的的即即Ix ,都都有有)()(xfxF 或或dxxfxdF)()( ,那那么么函函數(shù)數(shù))(xF就就稱稱為為)(xf導(dǎo)函數(shù)為導(dǎo)函數(shù)為)(xf,或或dxxf)(在在區(qū)區(qū)間間I內(nèi)內(nèi)原原函函數(shù)數(shù). .一、原函數(shù)與不定積分的概念一、原函數(shù)與不定積分的概念不定積分西安PPT課件原函數(shù)存在定理:原函數(shù)存在定理:如如果果函
2、函數(shù)數(shù))(xf在在區(qū)區(qū)間間I內(nèi)內(nèi)連連續(xù)續(xù),簡(jiǎn)言之:簡(jiǎn)言之:連續(xù)函數(shù)一定有原函數(shù)連續(xù)函數(shù)一定有原函數(shù).問(wèn)題:?jiǎn)栴}:(1) 原函數(shù)是否唯一?原函數(shù)是否唯一?例例 xxcossin xCxcossin ( 為任意常數(shù))為任意常數(shù))C那那么么在在區(qū)區(qū)間間I內(nèi)內(nèi)存存在在可可導(dǎo)導(dǎo)函函數(shù)數(shù))(xF,使使Ix ,都都有有)()(xfxF . .(2) 若不唯一它們之間有什么聯(lián)系?若不唯一它們之間有什么聯(lián)系?不定積分西安PPT課件關(guān)于原函數(shù)的說(shuō)明:關(guān)于原函數(shù)的說(shuō)明:(1)若)若 ,則對(duì)于任意常數(shù),則對(duì)于任意常數(shù) ,)()(xfxF CCxF )(都是都是)(xf的原函數(shù)的原函數(shù).(2)若)若 和和 都是都是 的
3、原函數(shù),的原函數(shù),)(xF)(xG)(xf則則CxGxF )()(( 為任意常數(shù))為任意常數(shù))C證證 )()()()(xGxFxGxF 0)()( xfxfCxGxF )()(( 為任意常數(shù))為任意常數(shù))C不定積分西安PPT課件任意常數(shù)任意常數(shù)積分號(hào)積分號(hào)被積函數(shù)被積函數(shù)不定積分的定義:不定積分的定義:在在區(qū)區(qū)間間I內(nèi)內(nèi),CxFdxxf )()(被積表達(dá)式被積表達(dá)式積分變量積分變量函函數(shù)數(shù))(xf的的帶帶有有任任意意常常數(shù)數(shù)項(xiàng)項(xiàng)的的原原函函數(shù)數(shù)稱為稱為)(xf在區(qū)間在區(qū)間I內(nèi)的內(nèi)的不不定定積積分分,記記為為 dxxf)(. .不定積分西安PPT課件例例1 1 求求.5dxx 解解,656xx
4、.665Cxdxx 解解例例2 2 求求.112 dxx ,11arctan2xx .arctan112 Cxdxx不定積分西安PPT課件例例3 3 設(shè)曲線通過(guò)點(diǎn)(設(shè)曲線通過(guò)點(diǎn)(1,2),且其上任一點(diǎn)處的),且其上任一點(diǎn)處的切線斜率等于這點(diǎn)橫坐標(biāo)的兩倍,求此曲線方程切線斜率等于這點(diǎn)橫坐標(biāo)的兩倍,求此曲線方程.解解設(shè)曲線方程為設(shè)曲線方程為),(xfy 根據(jù)題意知根據(jù)題意知,2xdxdy 即即)(xf是是x2的的一一個(gè)個(gè)原原函函數(shù)數(shù).,22 Cxxdx,)(2Cxxf 由曲線通過(guò)點(diǎn)(由曲線通過(guò)點(diǎn)(1,2), 1 C所求曲線方程為所求曲線方程為. 12 xy不定積分西安PPT課件函函數(shù)數(shù))(xf的的
5、原原函函數(shù)數(shù)的的圖圖形形稱稱為為)(xf的的積積分分曲曲線線.顯然,求不定積分得到一積分曲線族顯然,求不定積分得到一積分曲線族.由不定積分的定義,可知由不定積分的定義,可知 ),()(xfdxxfdxd ,)()(dxxfdxxfd ,)()( CxFdxxF.)()( CxFxdF結(jié)論:結(jié)論: 微分運(yùn)算與求不定積分的運(yùn)算是微分運(yùn)算與求不定積分的運(yùn)算是的的.不定積分西安PPT課件實(shí)例實(shí)例 xx 11.11Cxdxx 啟示啟示能否根據(jù)求導(dǎo)公式得出積分公式?能否根據(jù)求導(dǎo)公式得出積分公式?結(jié)論結(jié)論既然積分運(yùn)算和微分運(yùn)算是互逆的,既然積分運(yùn)算和微分運(yùn)算是互逆的,因此可以根據(jù)求導(dǎo)公式得出積分公式因此可以
6、根據(jù)求導(dǎo)公式得出積分公式.)1( 二、二、 基本積分表基本積分表不定積分西安PPT課件基基本本積積分分表表 kCkxkdx()1(是常數(shù)是常數(shù)););1(1)2(1 Cxdxx;ln)3( Cxxdx說(shuō)明:說(shuō)明: , 0 x,ln Cxxdx )ln(, 0 xx,1)(1xxx ,)ln( Cxxdx,|ln Cxxdx簡(jiǎn)寫為簡(jiǎn)寫為.ln Cxxdx不定積分西安PPT課件 dxx211)4(;arctanCx dxx211)5(;arcsinCx xdxcos)6(;sinCx xdxsin)7(;cosCx xdx2cos)8( xdx2sec;tanCx xdx2sin)9( xdx2c
7、sc;cotCx 不定積分西安PPT課件 xdxxtansec)10(;secCx xdxxcotcsc)11(;cscCx dxex)12(;Cex dxax)13(;lnCaax xdxsinh)14(;coshCx xdxcosh)15(;sinhCx 不定積分西安PPT課件例例4 4 求積分求積分.2dxxx 解解dxxx 2dxx 25Cx 125125.7227Cx 根據(jù)積分公式(根據(jù)積分公式(2)Cxdxx 11 不定積分西安PPT課件 dxxgxf)()()1(;)()( dxxgdxxf證證 dxxgdxxf)()( dxxgdxxf)()().()(xgxf 等式成立等式成
8、立.(此性質(zhì)可推廣到有限多個(gè)函數(shù)之和的情況)(此性質(zhì)可推廣到有限多個(gè)函數(shù)之和的情況)三、三、 不定積分的性質(zhì)不定積分的性質(zhì)不定積分西安PPT課件 dxxkf)()2(.)( dxxfk(k是是常常數(shù)數(shù),)0 k例例5 5 求積分求積分解解.)1213(22dxxx dxxx)1213(22 dxxdxx 22112113xarctan3 xarcsin2 C 不定積分西安PPT課件例例6 6 求積分求積分解解.)1(122dxxxxx dxxxxx )1(122dxxxxx )1()1(22dxxx 1112dxxdxx 1112.lnarctanCxx 不定積分西安PPT課件例例7 7 求積
9、分求積分解解.)1(21222dxxxx dxxxx )1(21222dxxxxx )1(12222dxxdxx 22111.arctan1Cxx 不定積分西安PPT課件例例8 8 求積分求積分解解.2cos11 dxx dxx2cos11 dxx1cos2112 dxx2cos121.tan21Cx 說(shuō)明:說(shuō)明: 以上幾例中的被積函數(shù)都需要進(jìn)行以上幾例中的被積函數(shù)都需要進(jìn)行恒等變形,才能使用基本積分表恒等變形,才能使用基本積分表.不定積分西安PPT課件例例 9 9 已知一曲線已知一曲線)(xfy 在點(diǎn)在點(diǎn))(,(xfx處的處的切線斜率為切線斜率為xxsinsec2 ,且此曲線與,且此曲線與y軸的交軸的交點(diǎn)為點(diǎn)為)5 , 0(,求此曲線的方程,求此曲線的方程.解解,sinsec2xxdxdy dxxxy sinsec2,costanCxx , 5)0( y, 6 C所求曲線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人裝修貸款合同范本參考4篇
- 2024年中班科學(xué)《空氣》教案
- 屋面保溫工程施工方案
- 2024年學(xué)校食堂食品安全管理制度(30篇)
- 景觀河道施工方案
- 二零二五年度綠色建筑設(shè)計(jì)與施工借款合同參考格式4篇
- 2025年牧草種子銷售與農(nóng)業(yè)技術(shù)培訓(xùn)合同3篇
- 年度家居棉品競(jìng)爭(zhēng)策略分析報(bào)告
- 鴨子拌嘴課程設(shè)計(jì)
- 部編版語(yǔ)文七年級(jí)上冊(cè)《藤野先生》教學(xué)設(shè)計(jì)(第1課時(shí))
- 漆畫漆藝 第三章
- CB/T 615-1995船底吸入格柵
- 光伏逆變器一課件
- 貨物供應(yīng)、運(yùn)輸、包裝說(shuō)明方案
- (完整版)英語(yǔ)高頻詞匯800詞
- 《基礎(chǔ)馬來(lái)語(yǔ)》課程標(biāo)準(zhǔn)(高職)
- IEC61850研討交流之四-服務(wù)影射
- 《兒科學(xué)》新生兒窒息課件
- 材料力學(xué)壓桿穩(wěn)定
- 人教版小升初英語(yǔ)知識(shí)點(diǎn)匯總
- 靜態(tài)爆破專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論