強烈推薦高一數學抽象函數常見題型解法綜述_第1頁
強烈推薦高一數學抽象函數常見題型解法綜述_第2頁
強烈推薦高一數學抽象函數常見題型解法綜述_第3頁
強烈推薦高一數學抽象函數常見題型解法綜述_第4頁
強烈推薦高一數學抽象函數常見題型解法綜述_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、抽象函數常見題型解法綜述趙春祥抽象函數是指沒有給出函數的具體解析式,只給出了一些體現函數特征的式子的一類函數。由于抽象函數表現形式的抽象性,使得這類問題成為函數內容的難點之一。本文就抽象函數常見題型及解法評析如下:一、定義域問題例1. 已知函數的定義域是1,2,求f(x)的定義域。解:的定義域是1,2,是指,所以中的滿足從而函數f(x)的定義域是1,4評析:一般地,已知函數的定義域是A,求f(x)的定義域問題,相當于已知中x的取值范圍為A,據此求的值域問題。例2. 已知函數的定義域是,求函數的定義域。解:的定義域是,意思是凡被f作用的對象都在中,由此可得所以函數的定義域是評析:這類問題的一般形

2、式是:已知函數f(x)的定義域是A,求函數的定義域。正確理解函數符號及其定義域的含義是求解此類問題的關鍵。這類問題實質上相當于已知的值域B,且,據此求x的取值范圍。例2和例1形式上正相反。二、求值問題例3. 已知定義域為的函數f(x),同時滿足下列條件:;,求f(3),f(9)的值。解:取,得因為,所以又取得評析:通過觀察已知與未知的聯系,巧妙地賦值,取,這樣便把已知條件與欲求的f(3)溝通了起來。賦值法是解此類問題的常用技巧。三、值域問題例4. 設函數f(x)定義于實數集上,對于任意實數x、y,總成立,且存在,使得,求函數的值域。解:令,得,即有或。若,則,對任意均成立,這與存在實數,使得成

3、立矛盾,故,必有。由于對任意均成立,因此,對任意,有下面來證明,對任意設存在,使得,則這與上面已證的矛盾,因此,對任意所以評析:在處理抽象函數的問題時,往往需要對某些變量進行適當的賦值,這是一般向特殊轉化的必要手段。四、解析式問題例5. 設對滿足的所有實數x,函數滿足,求f(x)的解析式。解:在中以代換其中x,得:再在(1)中以代換x,得化簡得:評析:如果把x和分別看作兩個變量,怎樣實現由兩個變量向一個變量的轉化是解題關鍵。通常情況下,給某些變量適當賦值,使之在關系中“消失”,進而保留一個變量,是實現這種轉化的重要策略。五、單調性問題例6. 設f(x)定義于實數集上,當時,且對于任意實數x、y

4、,有,求證:在R上為增函數。證明:在中取,得若,令,則,與矛盾所以,即有當時,;當時,而所以又當時,所以對任意,恒有設,則所以所以在R上為增函數。評析:一般地,抽象函數所滿足的關系式,應看作給定的運算法則,則變量的賦值或變量及數值的分解與組合都應盡量與已知式或所給關系式及所求的結果相關聯。六、奇偶性問題例7. 已知函數對任意不等于零的實數都有,試判斷函數f(x)的奇偶性。解:取得:,所以又取得:,所以再取則,即因為為非零函數,所以為偶函數。七、對稱性問題例8. 已知函數滿足,求的值。解:已知式即在對稱關系式中取,所以函數的圖象關于點(0,2002)對稱。根據原函數與其反函數的關系,知函數的圖象

5、關于點(2002,0)對稱。所以將上式中的x用代換,得評析:這是同一個函數圖象關于點成中心對稱問題,在解題中使用了下述命題:設a、b均為常數,函數對一切實數x都滿足,則函數的圖象關于點(a,b)成中心對稱圖形。八、網絡綜合問題例9. 定義在R上的函數f(x)滿足:對任意實數m,n,總有,且當x>0時,0<f(x)<1。(1)判斷f(x)的單調性;(2)設,若,試確定a的取值范圍。解:(1)在中,令,得,因為,所以。在中,令因為當時,所以當時而所以又當x=0時,所以,綜上可知,對于任意,均有。設,則所以所以在R上為減函數。(2)由于函數y=f(x)在R上為減函數,所以即有又,根據函數的單調性,有由,所以直線與圓面無公共點。因此有,解得。評析:(1)要討論函數的單調性必然涉及到兩個問題:一是f(0)的取值問題,二是f(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論