《中考課件初中數(shù)學(xué)總復(fù)習(xí)資料》2020屆中考數(shù)學(xué)高分課件:專題八  解答壓軸題突破 (共50張PPT)_第1頁
《中考課件初中數(shù)學(xué)總復(fù)習(xí)資料》2020屆中考數(shù)學(xué)高分課件:專題八  解答壓軸題突破 (共50張PPT)_第2頁
《中考課件初中數(shù)學(xué)總復(fù)習(xí)資料》2020屆中考數(shù)學(xué)高分課件:專題八  解答壓軸題突破 (共50張PPT)_第3頁
《中考課件初中數(shù)學(xué)總復(fù)習(xí)資料》2020屆中考數(shù)學(xué)高分課件:專題八  解答壓軸題突破 (共50張PPT)_第4頁
《中考課件初中數(shù)學(xué)總復(fù)習(xí)資料》2020屆中考數(shù)學(xué)高分課件:專題八  解答壓軸題突破 (共50張PPT)_第5頁
已閱讀5頁,還剩45頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第二部分專題突破第二部分專題突破專題八專題八 解答壓軸題突破解答壓軸題突破分類突破分類突破類型類型1 幾何變換綜合題幾何變換綜合題折疊與旋轉(zhuǎn)折疊與旋轉(zhuǎn)1. 如圖2-8-1,在平面直角坐標(biāo)系中,點(diǎn)a(-2,0),b(2,0),c(0,2),點(diǎn)d,e分別是ac,bc的中點(diǎn),將cde繞點(diǎn)c逆時(shí)針旋轉(zhuǎn)得到cmn,點(diǎn)m,n分別是點(diǎn)d,e旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),記旋轉(zhuǎn)角度為. (1)如圖2-8-1,連接am,bn,求證:am=bn;(2)如圖2-8-1,當(dāng)=75時(shí),求點(diǎn)n的坐標(biāo);(3)當(dāng)amcn時(shí),求bn的長(zhǎng).(直接寫出結(jié)果即可)(1)證明:證明:a(-2,0),b(2,0),c(0,2),oa=ob=oc.又又

2、aoc=boc=90,oc=oc,aoc boc(sas). ac=bc.d,e分別是分別是ac,bc的中點(diǎn)的中點(diǎn),dc=ce.mcn是是dce旋轉(zhuǎn)得到的旋轉(zhuǎn)得到的,acm=bcn,cm=cd,ce=cn.cm=cn,acm=bcn,ac=bc.acm bcn(sas). am=bn. (2)解:解:bco=45,bcn=75,ocn=120.過點(diǎn)過點(diǎn)n作作nqy軸軸,垂足為垂足為q,如答圖如答圖2-8-1. ncq=60.在在rtbco中,中,bc=ce=cn=在在rtncq中中,ncq=60,qnc=30.(3)解:當(dāng)解:當(dāng)amcn 時(shí),時(shí),mcn=amc=90.在在rtacm中,中,ac

3、=2 ,cm= ,am=am=bn,bn=2. 如圖2-8-2,cab與cde均是等腰直角三角形,并且acb=dce=90. 連接be,ad的延長(zhǎng)線與bc, be的交點(diǎn)分別是點(diǎn)g,點(diǎn)f. (1)求證:afbe;(2)將cde繞點(diǎn)c旋轉(zhuǎn)直至cdbe時(shí),探究線段da,de,dg的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若da=4.5,dg=2,求bf的值. (1)證明:由題意,得證明:由題意,得cd=ce,ca=cb.acb=acd+dcb=90,dce=bce+dcb=90,acd=bce.acd bce(sas).cad=cbe. 又又cad+agc=90,agc=bgf,cbe+bgf=9

4、0.afb=90,即,即afbe.(2)解:解:de2=2dadg. 證明如下證明如下.在在rtdce中,中,sindec= ,cd=desindec= de.cdbe,cdg=afb=90.agc+dcg=90,adc=90.acd=agc,adc=cdg=90.adccdg.cd2=dadg,即,即 =dadg.de2=2dadg.(3)解:由解:由(2)知知de2=2dadg=24.52=18.de=3 ,cd= =3.cdbe, def=cde=45.cef=cde+ced=45+45=90.cef=dce=afe=90.四邊形四邊形dcef是矩形是矩形.又又cd=ce,四邊形四邊形d

5、cef是正方形是正方形.df=cd=3,gf=df-dg=1.cdbe,bfg cdg. ,即,即 . bf= .3. 如圖2-8-3,矩形abcd中,ab=4,ad=3,把矩形沿直線ac折疊,使點(diǎn)b落在點(diǎn)e處,ae交cd于點(diǎn)f,連接de. (1)求證:dec eda;(2)求df的值;(3)在線段ab上找一點(diǎn)p,連接fp使fpac,連接pc,試判定四邊形apcf的形狀,并說明理由,直接寫出此時(shí)線段pf的長(zhǎng). (1)證明:由題意可知,證明:由題意可知,在在eda與與dec中,中,eda dec(sss).(2)解:如答圖解:如答圖2-8-2.acd=cae,af=cf.設(shè)設(shè)df=x,則,則af

6、=cf=4-x.在在rtadf中,中,ad2+df2=af2,即即32+x2=(4-x)2.解得解得x= ,即,即df= . (3)解:四邊形解:四邊形apcf為菱形為菱形.理由如下理由如下.設(shè)設(shè)ac,fp相交于點(diǎn)相交于點(diǎn)o,如答圖如答圖2-8-2.fpac,aof=aop=90.又又cae=cab,apf=afp.af=ap. fc=ap.又又abcd,四邊形四邊形apcf是平行四邊形是平行四邊形.fpac,四邊形四邊形apcf為菱形為菱形.在矩形在矩形abcd中,中,ab=4,ad=3,ac=5.s菱形菱形= pfac=apad,ap=af=4- ,pf=類型類型2 點(diǎn)動(dòng)型綜合題點(diǎn)動(dòng)型綜合

7、題1. (2018廣東)已知rtoab,oab=90,abo=30,斜邊ob=4,將rtoab繞點(diǎn)o順時(shí)針旋轉(zhuǎn)60,如圖2-8-4,連接bc.(1)填空:obc=_;(2)如圖2-8-4,連接ac,作opac,垂足為點(diǎn)p,求op的長(zhǎng)度;(3)如圖2-8-4,點(diǎn)m,n同時(shí)從點(diǎn)o出發(fā),在ocb邊上運(yùn)動(dòng),m沿ocb路徑勻速運(yùn)動(dòng),n沿obc路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止. 已知點(diǎn)m的運(yùn)動(dòng)速度為1.5單位/s,點(diǎn)n的運(yùn)動(dòng)速度為1單位/s,設(shè)運(yùn)動(dòng)時(shí)間為x s, 60omn的面積為y,則當(dāng)x為何值時(shí),y取得最大值?最大值為多少?解:解:(2)ob=4,abo=30,oa= ob=2,ab= oa=2 .

8、saoc= oaab= 22 =2 . obc=60,abc=abo+obc=90.ac= =2 .op=(3)當(dāng)當(dāng)0 x 時(shí),點(diǎn)時(shí),點(diǎn)m在在oc上運(yùn)動(dòng),點(diǎn)上運(yùn)動(dòng),點(diǎn)n在在ob上運(yùn)動(dòng),上運(yùn)動(dòng),此時(shí)過點(diǎn)此時(shí)過點(diǎn)n作作neoc,交,交oc于點(diǎn)于點(diǎn)e,如答圖,如答圖2-8-3, 則則ne=onsin60=somn= omne= 1.5xy=當(dāng)當(dāng)x= 時(shí),時(shí),y有最大值,最大值為有最大值,最大值為當(dāng)當(dāng) x4時(shí),點(diǎn)時(shí),點(diǎn)m在在bc上運(yùn)動(dòng),點(diǎn)上運(yùn)動(dòng),點(diǎn)n在在ob上運(yùn)動(dòng)上運(yùn)動(dòng).如如答圖答圖2-8-3,過點(diǎn),過點(diǎn)m作作mhob于點(diǎn)于點(diǎn)h. 則則bm=8-1.5x,mh=bmsin60= (8-1.5x).y=

9、 onmh= x2+2 x. 當(dāng)當(dāng)x= 時(shí),時(shí),y取得最大值,取得最大值,此時(shí)此時(shí)y最大值最大值 .當(dāng)當(dāng)4x4.8時(shí),時(shí),m,n都在都在bc上運(yùn)動(dòng),上運(yùn)動(dòng),作作ogbc于點(diǎn)于點(diǎn)g,如答圖,如答圖2-8-3. 則則mn=12-2.5x,og=ab=2 .y= mnog=12 .當(dāng)當(dāng)x=4時(shí),時(shí),y有最大值有最大值2 .x4,y最大值最大值2 .綜上所述,當(dāng)綜上所述,當(dāng)x= 時(shí),時(shí),y有最大值,最大值為有最大值,最大值為 . 2. (2019株洲)如圖2-8-5,在矩形abcd中,連接ac,點(diǎn)e從點(diǎn)b出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著bac的路徑運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t s. 過點(diǎn)e作efbc于點(diǎn)f,在

10、矩形abcd的內(nèi)部作正方形efgh. (1)如圖2-8-5,當(dāng)abbc8時(shí),若點(diǎn)h在abc的內(nèi)部,連接ah,ch,求證:ahch;當(dāng)0t8時(shí),設(shè)正方形efgh與abc的重疊部分面積為s,求s與t的函數(shù)關(guān)系式;(2)當(dāng)ab6,bc8時(shí),若直線ah將矩形abcd的面積分成1 3兩部分,求t的值. 解:解:(1)四邊形四邊形efgh是正方形,是正方形,abbc,bebg,aecg,behbgh90.aehcgh90.又又ehgh, aeh cgh(sas). ahch. 當(dāng)當(dāng)0t4時(shí),重疊部分是正方形時(shí),重疊部分是正方形efgh,st2. 如答圖如答圖2-8-4,當(dāng),當(dāng)4t8時(shí)時(shí),重疊部分是五邊形重

11、疊部分是五邊形efgmn,ssabc-saen-scgm 88-2 (8-t)2-t2+ 16t-32. 綜上所述,綜上所述,s(2)如答圖如答圖2-8-5,延長(zhǎng),延長(zhǎng)ah交交bc于點(diǎn)于點(diǎn)m,當(dāng),當(dāng)bmcm4時(shí),直線時(shí),直線ah將矩形將矩形abcd的面積分成的面積分成1 3兩部分兩部分. ehbm,如答圖如答圖2-8-6,延長(zhǎng),延長(zhǎng)ah交交cd點(diǎn)于點(diǎn)點(diǎn)于點(diǎn)m,交,交bc的延長(zhǎng)線的延長(zhǎng)線于點(diǎn)于點(diǎn)k,當(dāng),當(dāng)cmdm3時(shí)時(shí),直線直線ah將矩形將矩形abcd的面積分的面積分成成 1 3兩部分,易證兩部分,易證adck8.ehbk,如答圖如答圖2-8-7,當(dāng)點(diǎn),當(dāng)點(diǎn)e在線段在線段ac上時(shí),延長(zhǎng)上時(shí),延長(zhǎng)

12、ah交交cd于點(diǎn)于點(diǎn)m,交,交bc的延長(zhǎng)線于點(diǎn)的延長(zhǎng)線于點(diǎn)n. 當(dāng)當(dāng)cmdm時(shí),直線時(shí),直線ah將矩形將矩形abcd的面積分成的面積分成1 3兩部分,易證兩部分,易證adcn8. 在在rtabc中,中,ac 10.efab, ef (16-t).ehcn, 解得解得t . 綜上所述,滿足條件的綜上所述,滿足條件的t的值為的值為類型類型3 線動(dòng)型綜合題線動(dòng)型綜合題1. 如圖2-8-6,在abc中,ab=ac,adbc于點(diǎn)d,bc=10 cm,ad=8 cm. 點(diǎn)p從點(diǎn)b出發(fā),在線段bc上以每秒3 cm的速度向點(diǎn)c勻速運(yùn)動(dòng),與此同時(shí),垂直于ad的直線m從底邊bc出發(fā),以每秒2 cm的速度沿da方向

13、勻速平移,分別交ab,ac,ad于點(diǎn)e,f,h. 當(dāng)點(diǎn)p到達(dá)點(diǎn)c時(shí),點(diǎn)p與直線m同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t s(t0).(1)當(dāng)t=2時(shí),連接de,df,求證:四邊形aedf為菱形;(2)在整個(gè)運(yùn)動(dòng)過程中,所形成的pef的面積存在最大值,當(dāng)pef的面積最大時(shí),求線段bp的長(zhǎng);(3)是否存在某一時(shí)刻t,使pef為直角三角形?若存在,請(qǐng)求出此時(shí)刻t的值;若不存在,請(qǐng)說明理由. (1)證明:當(dāng)證明:當(dāng)t=2時(shí),時(shí),dh=ah=4 cm,則,則h為為ad的中點(diǎn),的中點(diǎn),如答圖如答圖2-8-8. 又又efad,ef為為ad的垂直平分線的垂直平分線.ae=de,af=df. ab=ac,adbc于點(diǎn)于點(diǎn)

14、d,adbc,b=c. efbc,aef=b,afe=c.aef=afe. ae=af.ae=af=de=df,即四邊形,即四邊形aedf為菱形為菱形. (2)解:如答圖解:如答圖2-8-8,由,由(1)知知efbc,aefabc. ,即,即解得解得ef=10- t. spef= efdh=- t2+10t=- (t-2)2+10當(dāng)當(dāng)t=2時(shí),時(shí),spef存在最大值,存在最大值,最大值為最大值為10 cm2,此時(shí),此時(shí)bp=3t=6 cm. (3)解:存在解:存在. 理由如下理由如下.若點(diǎn)若點(diǎn)e為直角頂點(diǎn),如答圖為直角頂點(diǎn),如答圖2-8-9,此時(shí)此時(shí)pead,pe=dh=2t,bp=3t. p

15、ead, ,即,即 ,此比例式不成立,故此種情形不存在此比例式不成立,故此種情形不存在.若點(diǎn)若點(diǎn)f為直角頂點(diǎn),如答圖為直角頂點(diǎn),如答圖2-8-9,此時(shí)此時(shí)pfad,pf=dh=2t,bp=3t,cp=10-3t. pfad, ,即,即 .解得解得t= .若點(diǎn)若點(diǎn)p為直角頂點(diǎn),如答圖為直角頂點(diǎn),如答圖2-8-9. 過點(diǎn)過點(diǎn)e作作embc于點(diǎn)于點(diǎn)m,過點(diǎn),過點(diǎn)f作作fnbc于點(diǎn)于點(diǎn)n,則,則em =fn=dh=2t,emfnad.emad, ,即,即 .解得解得bm= t. pm=bp-bm=3t- . 在在rtemp中,由勾股定理,得中,由勾股定理,得pe2=em2+pm2=(2t)2+ . f

16、nad, ,即,即 ,解得,解得cn=pn=bc-bp-cn=10-3t-在在rtfnp中,由勾股定理,得中,由勾股定理,得pf2=fn2+pn2=(2t)2+ -85t+100. 在在rtpef中,由勾股定理,得中,由勾股定理,得ef2=pe2+pf2,即即化簡(jiǎn),得化簡(jiǎn),得 -35t=0.解得解得t= 或或t=0(不符題意,舍去不符題意,舍去).t= . 綜上所述,當(dāng)綜上所述,當(dāng)t= 時(shí),時(shí),pef為直角三角形為直角三角形. 2. (2018黑龍江)如圖2-8-7,在平面直角坐標(biāo)系中,菱形abcd的邊ab在x軸上,點(diǎn)b的坐標(biāo)為(-3,0),點(diǎn)c在y軸正半軸上,且sincbo= ,點(diǎn)p從點(diǎn)o出

17、發(fā),以每秒一個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng),移動(dòng)時(shí)間為t(0t5)s,過點(diǎn)p作平行于y軸的直線l,直線l掃過四邊形ocda的面積為s. (1)求點(diǎn)d的坐標(biāo);(2)求s關(guān)于t的函數(shù)關(guān)系式;(3)在直線l移動(dòng)過程中,l上是否存在一點(diǎn)q,使以b,c,q為頂點(diǎn)的三角形是等腰直角三角形?若存在,直接寫出q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由. 解:解:(1)在在rtboc中,中,ob=3,sincbo=設(shè)設(shè)co=4k,bc=5k.bc2=co2+ob2,25k2=16k2+9.解得解得k=1或或k=-1(不符題意,舍去不符題意,舍去).四邊形四邊形abcd是菱形,是菱形,cd=bc=5. d(5,4). (

18、2)如答圖如答圖2-8-10,當(dāng),當(dāng)0t2時(shí),直線時(shí),直線l掃過的圖形是四掃過的圖形是四邊形邊形ocqp,s=4t. 如答圖如答圖2-8-10,當(dāng),當(dāng)2t5時(shí),直線時(shí),直線l掃過的圖形是五掃過的圖形是五邊形邊形ocqta. s=s梯形梯形ocda-sdqt(3)如答圖如答圖2-8-10,a. 當(dāng)當(dāng)qb=qc,bqc=90時(shí),時(shí),b. 當(dāng)當(dāng)bc=cq,bcq=90時(shí),時(shí),q(4,1).c. 當(dāng)當(dāng)bc=bq,cbq=90時(shí),時(shí),q(1,-3).綜上所述,滿足條件的點(diǎn)綜上所述,滿足條件的點(diǎn)q坐標(biāo)為坐標(biāo)為 ,(4,1)或或(1,-3). 類型類型4 形動(dòng)型綜合題形動(dòng)型綜合題1. 把rtabc和rtde

19、f按如圖2-8-8擺放(點(diǎn)c與e重合),點(diǎn)b,c(e),f在同一條直線上. 已知acb=edf =90,def=45,ac=8 cm,bc=6 cm,ef=10 cm. 如圖2-8-8,def以1 cm/s的速度沿cb向abc勻速移動(dòng),在def移動(dòng)的同時(shí),點(diǎn)p從abc的頂點(diǎn)a出發(fā),以2 cm/s的速度沿ab向點(diǎn)b勻速移動(dòng);當(dāng)點(diǎn)p移動(dòng)到點(diǎn)b時(shí),點(diǎn)p停止移動(dòng),def也隨之停止移動(dòng). de與ac交于點(diǎn)q,連接pq,設(shè)移動(dòng)時(shí)間為t (單位:s).(1)用含t的代數(shù)式表示線段ap和aq的長(zhǎng),并寫出t的取值范圍;(2)連接pe,設(shè)四邊形apeq的面積為y(單位:cm2),試探究y的最大值;(3)當(dāng)t為何值

20、時(shí),apq是等腰三角形?(1)解:解:ap=2t.edf=90,def=45,cqe=45=def.cq=ce=t. aq=8-t. t的取值范圍是的取值范圍是0t5.(2)連接連接pe,過點(diǎn)過點(diǎn)p作作pgbc于點(diǎn)于點(diǎn)g,如答圖,如答圖2-8-11. 可求得可求得ab=10,sinb= ,pb=10-2t,eb=6-t.pg=pbsinb= (10-2t).y=sabc-spbe-sqce當(dāng)當(dāng)t= (在在0t5內(nèi)內(nèi))時(shí),時(shí),y有最大值,有最大值,y最大值最大值= (cm2).(3)若若ap=aq,則有,則有2t=8-t. 解得解得t=若若ap=pq,如答圖,如答圖2-8-12,過點(diǎn)過點(diǎn)p作作phac,則則ah=qh= ,phbc,aphabc. ,即,即 ,解得,解得t=若若aq=pq,如答圖,如答圖2-8-12,過點(diǎn)過點(diǎn)q作作qiab,則則ai=pi= ap=t.aiq=acb=90,a=a,aqiabc. ,即,即解得解得t=綜上所述,當(dāng)綜上所述,當(dāng)t= 時(shí),時(shí),apq是等腰三角形是等腰三角形. 2. 已知:如圖2-8-9,在平行四邊形abcd中,ab=3 cm,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論