高壓直流輸電系統(tǒng)發(fā)展論述_第1頁
高壓直流輸電系統(tǒng)發(fā)展論述_第2頁
高壓直流輸電系統(tǒng)發(fā)展論述_第3頁
高壓直流輸電系統(tǒng)發(fā)展論述_第4頁
高壓直流輸電系統(tǒng)發(fā)展論述_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、三峽大學(xué)科技學(xué)院 畢業(yè)設(shè)計(論文)譯文譯文題目 高壓直流輸電系統(tǒng)發(fā)展論述 英文題目 High Voltage Direct Current Transmission-A Review 學(xué)生姓名: 學(xué)號:專業(yè): 電氣工程及其自動化 班級: 指導(dǎo)教師: 王彥海 評閱教師: 王彥海 完成日期 二一五 年 十二 月 二十七 日 摘要:高壓直流(HVDC)技術(shù)和概念的發(fā)展里程碑是在20世紀(jì)50年代。由于采用了高功率晶閘管開關(guān)(1960-70s),直流輸電技術(shù)在20世紀(jì)80年代達(dá)到了一個顯著的成熟度。經(jīng)典的HVDC使用基于晶閘管的電流的整流轉(zhuǎn)換器(LCC)

2、技術(shù)。功率的半導(dǎo)體開關(guān)出現(xiàn)在1980-90s,帶轉(zhuǎn)向通斷能力尤其是IGBT和IGCT的,并在正在進(jìn)行的進(jìn)展此領(lǐng)域中,介紹了傳統(tǒng)的(二級)電壓源轉(zhuǎn)換器(VSC)技術(shù)和其各種構(gòu)造,多層次,多模塊VSCS,也作為可行轉(zhuǎn)換器技術(shù)電力系統(tǒng)的應(yīng)用程序。 直流系統(tǒng)由于其潛力重新出現(xiàn),由于其潛在要么直接處理,或便于解決了大量的現(xiàn)有的和預(yù)期的互聯(lián)交流電力系統(tǒng)的穩(wěn)態(tài)和動態(tài)的問題。高壓直流輸電技術(shù)得以實現(xiàn)長距離傳輸大容量電力。HVDC技術(shù)是長距離傳輸成為可能。比較評估,研究和審查直流輸電與高壓交流輸電系統(tǒng)。介紹,應(yīng)用,高壓直流系統(tǒng)的不同的方案的概述。 關(guān)鍵詞:直流轉(zhuǎn)換器,直流輸電換流技術(shù),層次水平,直流輸電系統(tǒng)組成

3、,高壓直流輸電方案,特高壓直流輸電。一介紹 世界上第一臺發(fā)電機是直流電發(fā)電機而導(dǎo)致第一個輸電線路也是直流。盡管當(dāng)時直流電至高無上,但交流電卻因為它的用途廣泛而取代了直流電。這是因為變壓器、多元電路、感應(yīng)電動機在1880-1890年代的普及。同時電力電子技術(shù)日益滲透到電力系統(tǒng)主要是因為高壓大功率半導(dǎo)體可控管的不斷進(jìn)步。 變壓器是一個簡單的機械裝置并被廣泛被用來改變電壓等級,輸電,配電,以及電平下降。磁感應(yīng)電動機是電產(chǎn)業(yè)的初始并且僅與交流電一起使用。這就是為什么交流電在商業(yè)上與國內(nèi)負(fù)荷上非常有用的原因。在長距離傳輸上直流電在經(jīng)濟(jì)性、技術(shù)性和環(huán)境上比交流電更有優(yōu)勢。一般情況下,高壓直流(H

4、VDC)傳輸系統(tǒng)的優(yōu)勢可以分為成本、靈活性和操作要求的基礎(chǔ)三個方面。     最簡單的直流方案是背靠背互聯(lián),它有兩個轉(zhuǎn)換器在同一個站點。這些類型的連接是用的兩種不同的交流輸電系統(tǒng)之間的相互關(guān)系。     復(fù)返鏈接是連接兩個換流站,由單一導(dǎo)體線和大地或海洋用作返回路徑。最常見的直流雙相鏈接,兩個換流站與雙相導(dǎo)體,和每個導(dǎo)體都有自己的回報。多端直流輸電系統(tǒng)有超過兩個轉(zhuǎn)換器,可串聯(lián)或并聯(lián)連接。2 傳輸系統(tǒng)的可靠性和可控性評估現(xiàn)代電力系統(tǒng)的技術(shù)結(jié)構(gòu)非常復(fù)雜。他們由大量相互關(guān)聯(lián)的子系統(tǒng)和組件的交互,并影響

5、整個系統(tǒng)的可靠性??煽啃缘亩x是一個組件或系統(tǒng),以規(guī)定的條件下在既定期間內(nèi)執(zhí)行所需的功能的能力。電氣系統(tǒng)的可靠性評估是為了確定投資,維護(hù)計劃和作業(yè)是否進(jìn)行以及何時進(jìn)行。 電力系統(tǒng)可靠性通常是由系統(tǒng)的充足性和安全性兩方面的功能劃分。電力系統(tǒng)在任何時候要提供給客戶的電力需求,并要考慮到系統(tǒng)部件的定期和不定期的斷電的能力。安全性是指電力系統(tǒng)承受突然干擾,如電短路或系統(tǒng)組件的非預(yù)期損失的能力。  一個要包括整個電力系統(tǒng)復(fù)雜性的可靠性模型不可能實現(xiàn)。分析來說過于復(fù)雜,并且結(jié)果很難解釋。如果將單獨的系統(tǒng)分成三個階段(HL):發(fā)電(HL1),發(fā)電和輸電(HL2),配電(HL3)。每一階段就可以單獨

6、的建模和評估。研究第二階段也稱為復(fù)合系統(tǒng)的可靠性評估,這可以包括充足和安全分析。高壓直流系統(tǒng)的可靠性評估可以單獨建模,然后列入第二階段評估系統(tǒng)整體可靠性的影響。直流輸電系統(tǒng)的可靠性評估是一個非常重要的指導(dǎo)系統(tǒng)以及模型。 電氣與電子工程師協(xié)會的標(biāo)準(zhǔn)是評估高壓直流輸電系統(tǒng)變電站的指南。這個標(biāo)準(zhǔn)推動并定義了高壓直流輸電系統(tǒng)的生命周期內(nèi)所有階段的可靠性、可用性、可維護(hù)性的基本概念。介紹高壓直流輸電系統(tǒng)可靠性、可用性、可維護(hù)性的目的就在于幫助改善電站服務(wù)的可靠性、可用性、可維護(hù)性計算并比較考量不同高壓直流輸電系統(tǒng)的可靠性、可用性、可維護(hù)性減少損耗減少多余設(shè)計提升高壓直流輸電系統(tǒng)整流器的規(guī)格。 

7、從另一方面講,高壓直流輸電環(huán)節(jié)的可控性提供了堅實的傳輸容量。高壓直流輸電線路的利用率通常高于針對超高壓(EHV)交流輸電,降低了傳輸成本。通過消除循環(huán)流動,可控釋放為服務(wù)中間負(fù)載,并提供出口,用于本地產(chǎn)生的預(yù)期目的,并進(jìn)行傳輸容量。3 交流傳輸與直流傳輸 隨著可再生能源發(fā)電的快速發(fā)展,如風(fēng)力和太陽能發(fā)電,直流輸電是通過緊接經(jīng)濟(jì)和環(huán)境的方式來養(yǎng)活這些分布式能量回饋電網(wǎng)。     實際上,交流電是非常熟悉工業(yè)和家用負(fù)載的,但它在長距離傳輸中有一定的局限性。另外,作為市電的負(fù)載增加,電網(wǎng)的容量需要擴大,盡管架空交流線已經(jīng)占據(jù)太多空間傳輸,但是直流輸電

8、作為一個新的傳輸方法是解決這些問題和其他問題的新方法,它是在幾個項目被使用。 例如,開關(guān)操作中,是嚴(yán)重的瞬態(tài)過電壓的高壓輸電線路。交流傳動的高峰值正常峰值電壓的2 - 3倍,而在直流輸電是正常電壓的1.7倍。交流傳動的高峰值正常峰值電壓的2 - 3倍,而直流輸電是正常電壓的1.7倍。此外,特高壓直流輸電相比高壓交流輸電線路具有較小的電暈。A. 傳輸損耗比較 所有交流或直流的輸電和送電線費用通常包括主要以下部分,例如在塔的設(shè)施期間,相當(dāng)數(shù)量地區(qū)也許被風(fēng)景占領(lǐng),架設(shè)指揮塔,絕緣體,終端設(shè)備的費用。除業(yè)務(wù)成本之外例如送電線損失。對于交流和直

9、流線路給予操作上的限制,必須給予直流線路盡可能多的權(quán)力且有兩個導(dǎo)體的交流線路與相同大小的三根導(dǎo)線的能力。 此外,直流線路基礎(chǔ)設(shè)施的要求比交流線路較少,這將從而減少直流線路安裝成本。1)經(jīng)濟(jì)因素   對于一項特定傳輸任務(wù),在最后決定實施被執(zhí)行高壓交流輸電系統(tǒng)或高壓直流輸電系統(tǒng)前都要進(jìn)行可行性研究。每當(dāng)長距離傳輸時所討論的,“收支平衡距離”的概念就產(chǎn)生了。這就是直流線路成本的節(jié)約,距離越長抵消換流站的成本就越高。2) 環(huán)境問題 直流輸電系統(tǒng)基本上與環(huán)境友好,因為利用現(xiàn)有的發(fā)電廠是改進(jìn)能源傳輸更一個更高效的方式。土地覆蓋和直流架空輸電線路的通行權(quán)相關(guān)的成本不是

10、像交流線那樣高。這減少了視覺沖擊和節(jié)省土地賠償新項目。還可以提高現(xiàn)有線路的電力傳輸能力。 四.直流輸電的優(yōu)點和高壓直流輸電的后發(fā)劣勢  雖然選擇直流輸電的理由通常是經(jīng)濟(jì)但可能還有其他原因。 在許多情況下,同一距離下由于系統(tǒng)穩(wěn)定的局限性需要更多的交流線路提供相同的權(quán)力。此外,長途線路通常需要中間交換站和無功補償器,這增加了交流輸電變電站成本。 直流輸電可能是互連兩個異步網(wǎng)絡(luò)唯一可行的方式。減少故障電流,利用長電纜電路,繞過網(wǎng)絡(luò)擁塞,分享實用征地的可靠性,減輕環(huán)境問題。在所有這些應(yīng)用中,直流交流輸電系統(tǒng)起到很好的補充作用。下面這些強調(diào)了高壓直流輸電系統(tǒng)的優(yōu)缺點。

11、60; A.優(yōu)點 1)  每一路導(dǎo)線能承擔(dān)較大的電量 2) 基站建設(shè)更簡單,電力塔更小。 3 ) 雙極式高壓直流輸電系統(tǒng)的線路只需要兩座絕緣整流器而不是三座。 4) 更窄的通行權(quán)。 5) 要求只有三分之一的導(dǎo)體的絕緣套為雙回路交流線路。6) 在線路施工節(jié)省大約30。 7)接地回路都可以使用。 8)每根導(dǎo)線可以操作作為一個獨立的電路。 9)在穩(wěn)定狀態(tài)下沒有充電電流。 10)無集膚效應(yīng)。 11)降低線路損耗。 12) 線路功率因數(shù)總是統(tǒng)一的。 13)

12、 線路不需要無功補償。 14) 同步操作不是必需的。 15) 互連不同頻率的交流系統(tǒng)。 16) 不會產(chǎn)生交流系統(tǒng)的短路電流。17)  其可控性允許直流“超越”多“薄弱點”。 18) 直流地下或海底電纜沒有物理限制限制距離或功率電平19)  可用于共享行與其他實用程序 20) 直流地下或海底電纜大大節(jié)省安裝電纜和損失成本 B.缺點 1)轉(zhuǎn)換器是昂貴的。 2)轉(zhuǎn)換器需要大量的無功功率。 3)多終端或網(wǎng)絡(luò)操作是不容易的。 4)轉(zhuǎn)換器產(chǎn)生諧波,所以需要過濾器。 5) 盈虧平

13、衡距離影響通行權(quán)的成本和線路建設(shè)。 五.高壓直流輸電系統(tǒng)的應(yīng)用 A.遠(yuǎn)距離大容量輸電 高壓直流輸電系統(tǒng)通常提供了更經(jīng)濟(jì)的方式而替代交流輸電,一般用在在長的距離,大容量電力輸送的清潔遠(yuǎn)程資源,如水電開發(fā),坑口電廠,太陽能,大型風(fēng)力發(fā)電場,或大熱巖地?zé)岙a(chǎn)生的高電能。傳輸與使用較少的高壓直流輸電線路比交流輸電更合適。  B.電纜傳輸 不像在A線纜的情況下,物理限制限制了HVDC地下或海底電纜的距離或功率電平。地下電纜可用于共享行與其他實用程序,沒有在使用公共走廊的影響可靠性的擔(dān)憂。 地下和海底電纜系統(tǒng)的節(jié)能優(yōu)勢,此前已證明,明知這取決于功率電平進(jìn)行傳

14、輸,這些節(jié)省可以抵消在40公里以上的距離更高的換流站的成本。 另一方面,交流輸電在有纜繩容量的情況下由于當(dāng)前的費用有它易反應(yīng)的組分,因為纜繩比AC架空線有更高的電容并且降低感應(yīng)性。雖然這可以由中間分流器補償對地下纜繩以增加的費用。 C.異步關(guān)系 隨著高壓直流輸電系統(tǒng),互連異步網(wǎng)絡(luò)之間可以進(jìn)行更多的經(jīng)濟(jì)和可靠的系統(tǒng)運行。異步互連允許在互惠互利的情況下互連,同時提供了兩個系統(tǒng)之間的緩沖區(qū)。通常,這些互連使用到后端轉(zhuǎn)換器沒有傳輸線。 異步直流環(huán)節(jié)在一個網(wǎng)絡(luò)中斷傳播中有效地采取行動從而傳遞到另一個網(wǎng)絡(luò)級。 這讓更高的功率傳輸是可以實現(xiàn)的,并在弱電系統(tǒng)的

15、應(yīng)用中采用電容整流轉(zhuǎn)換器提高了電壓穩(wěn)定性。有了動態(tài)電壓支撐和改善電壓穩(wěn)定性,而不需要交流系統(tǒng)增援電壓源換流器(VSC)的轉(zhuǎn)換器允許更高的功率傳輸提供。因為沒有最小功率或電流限制其反向功率方向可不受任何限制。  D.離岸的傳送 自勵式,動態(tài)電壓控制,以及啟動能力,允許VSC轉(zhuǎn)換器和孤立的島嶼上負(fù)載,或海上鉆井和生產(chǎn)平臺的長途海底電纜隔離。 VSC轉(zhuǎn)換器可以在變量頻率下更有效地推動大型壓縮機或泵使用高壓電機負(fù)載。大型遠(yuǎn)程風(fēng)力發(fā)電陣列需要收集器系統(tǒng)中,無功功率支持的渠道傳播,其傳播對于風(fēng)力發(fā)電必須經(jīng)常穿越風(fēng)景或環(huán)境敏感地區(qū)的水域。許多更好的風(fēng)網(wǎng)站具有更高的容量

16、因子均位于境外?;赩SC的HVDC輸電不僅可以有效地利用長距離陸地或海底電纜,而且還提供無功支持,風(fēng)力發(fā)電和復(fù)雜的互聯(lián)點。E.對大市區(qū)的功率傳輸 大城市的電源取決于地方一代的力量進(jìn)口能力。若當(dāng)?shù)匾淮容^陳舊其效率就不及位于遠(yuǎn)程的新單位。空氣質(zhì)量法規(guī)可能限制這些老單位的可用性。由于通行權(quán)的限制和土地使用的限制新的傳輸在大城市很難完成。協(xié)定基于VSC的地下傳輸電路可以被安置帶來現(xiàn)有的兩用優(yōu)先權(quán),以及提供電壓支持允許了更加經(jīng)濟(jì)的電源和不用妥協(xié)的可靠性。接收終端像給予力量,提供電壓規(guī)則和動力的虛擬的發(fā)電機一樣成為有反應(yīng)的電力儲備。電站結(jié)構(gòu)緊湊,主要選址在市區(qū)并安置在室內(nèi)在進(jìn)行下比較容易。此

17、外, VSC提供的動態(tài)電壓支持會媲美交流輸電的輸電能力。 這些應(yīng)用可以被總結(jié)如下:1)通過長途架空線傳輸進(jìn)行大能量輸電。 2)通過海底電纜傳輸大部分能量。 3)在背靠背直流鏈接下快速和精確地控制能量流,創(chuàng)建一個積極的機電振蕩阻尼,通過調(diào)節(jié)發(fā)射功率提高網(wǎng)絡(luò)的穩(wěn)定性。 4)使用異步背靠背直流鏈接連接兩個不同頻率的交流系統(tǒng),沒有對系統(tǒng)頻率或相位角度的約束。 5)多端直流鏈接為用于為廣大地區(qū)提供必要的戰(zhàn)略和政治關(guān)系的潛在合作伙伴。6)當(dāng)消費者很遠(yuǎn)時為其提供可新的能源,例如水力發(fā)電,礦嘴、太陽,風(fēng)力場或者熱石地?zé)崮堋?#160;7)脈沖寬度調(diào)制可用于基于

18、晶閘管常規(guī)高壓直流VSC的HVDC技術(shù)。這種技術(shù)非常適用于風(fēng)電連接到電網(wǎng)。 8)在不增加短路功率,無功功率沒有的情況下連接兩個交流系統(tǒng)到直流鏈路傳輸。 原文:High Voltage Direct Current Transmission Abstract-Major milestones in the development of high voltage direct current (HVDC) technologies 

19、;and concepts were achieved in 1950s. Thanks to the high power thyristor switches (1960-70s), the HVDC technologies reached a significant degree of maturity in 1980s. The 

20、;classical HVDC uses thyristor-based current-sourced line-com mutated converter (LCC) technology.The advent of power semiconductor switches in 1980-90s, with turn on-off capabilities especially&#

21、160;the IGBTs andIGCTs, and the on-going progress in this field, have introduced the conventional (two-level) voltage-source converter (VSC) technology and its variety of configurations

22、, multi-level and multi-module VSCs,also as viable converter technologies for power system applications. The DCsystem is experiencing significant degree of reemergence due to its potential to either&#

23、160;directly address, or to facilitate resolving a large number of existing and anticipated interconnected AC power system steady-state and dynamic issues.Index Terms: HVDC converters,&

24、#160;HVDC converter technologies, Hierarchal Level, HVDC system components,HVDC schemes, HVDC transmission. I. INTRODUCTION The first electric generator was the direct current ( DC)generator

25、, and hence, the first electric power transmission line was constructed with DC. Despite the initial supremacy of the DC, the alternating current (AC) supplanted the DC f

26、or greater uses. This is because of the availability of the transformers, poly-phase circuits, and the induction motors in the 1880s and 1890s .The ever increasing penetr

27、ation of the power electronics technologies into power systems is mainly due to the continuous progress of the high-voltage high-power fully-controlled semiconductors . Transformers

28、0;are very simple machines and easy to be used to change the voltage levels for transmission, distribution, and stepping down of electric power. Induction motors are the&

29、#160;workhorse of the industry and work only with AC. That is why AC has become very useful for the commercial and domestic loads. For long transmission, DC is 

30、more favorable than AC because of its economical, technical, and environmental advantages. In general, high voltage direct current (HYDC)transmission systems can be classified in s

31、everal ways; on the basis of cost, flexibility, and operational requirements. The simplest HVDC scheme is the back-to-back interconnection, where it has two converters on the&

32、#160;same site and has no transmission lines. These types of connections are used as inter-ties between two different AC transmission systems. The mono-polar link connects two

33、 converter stations by a single conductor line and the earth or the sea is used as the returned path. The most common HYDC links are bipolar,where two converter

34、 stations are connected with bipolar conductors , and each conductor has its own ground return.The multi-terminal HYDC transmission systems have morethan two converter stations,

35、60;which could be connected is seriesor parallel . II. RELIABILITY AND CONTROLLABILITY EVALUATIONS OF TRANSMISSION SYSTEMS Modern power systems are very complex technical structures.

36、60;They consist of large number of interconnected subsystems and components each of which interact with, and influence, the overall systems reliability. One defmition of reliabilit

37、y is the ability of a component or a system to perform required functions under stated conditions for a stated period of time . Reliability assessments of electrical

38、 systems are performed in order to determine where and when new investments, maintenance planning, and operation are going to be made. Power system reliability is often&#

39、160;divided by the two functional aspects of system adequacy and security. Adequacy is the ability of the power system to supply the aggregate electric power and energy&#

40、160;requirements of the customer at all times, taking into account scheduled and unscheduled outages of system components. Security is the ability of the power system to 

41、withstand sudden disturbances such as electric short circuits or non-anticipated loss of system components . A reliability model that includes the whole complexity of the enti

42、re electrical power system would be impossible to implement. The analysis would be far too complex and the results would be very difficult to interpret. Instead it i

43、s preferable to separate the system into three hierarchal levels(HL): generation(HLl), generation and transmission(HL2),and distribution(HL3). Each level can then be modeled and evaluated

44、60;individually . A study of HL2 is also referred to as a composite system reliability assessment and this can include both adequacy and security analysis. Reliability as

45、sessments of HYDC systems can be modeled and evaluated separately and then included into HL2 to evaluate the effect of the overall system reliability. In reliability asse

46、ssments of such HVDC systems, it is of great importance to know the technicalities of the system, in order to model it. The next section describes the HVDC syst

47、ems details. The IEEE Standard is a guide for the evaluation of the HVDC converter stations reliability . It promotes the basic concepts of reliability, availability, and

48、 maintainability (RAM) in all phases of the HVDC station's life cycle. The intention of introducing these concepts of RAM in HVDC projects is to provide help in:

49、 i) Improving RAM for stations in service, ii) Calculating and comparing RAM for different HVDC designs,iii) Reducing costs, iv) Reducing spare parts, and v) Improving HV

50、DC converter specifications , several researches have been published covering the area of assessing the reliability of the HVDC system as a single system. On the other

51、60;hand, the controllability of HVDC links offers firm transmission capacity without limitation due to network congestion or loop flow on parallel paths. Controllability allows the

52、 HVDC to 'leap-frog' mUltiple 'choke-points' or bypass sequential path limits in the AC network. Therefore, the utilization of HVDC links is usually higher than

53、0;that for extra high voltage ( EHV) AC transmission lowering the transmission cost per MWh. By eliminating loop flow,controllability frees up parallel transmission capacity for

54、60;its intended purpose of serving intermediate load and providing an outlet for local generation . III. AC VERSUS DC TRANSMISSION As the rapid development of renewable e

55、nergy generation,like wind and solar power generation, and high electrical power generated at long-distances, it is urgent to feed these distributed energy back to power grid&

56、#160;through an economic and environmental way. Actually, AC is very familiar for industrial and domestic loads, but it has some limitations for long transmission lines. Moreo

57、ver, as the city power load is increasing, the capacity of grid need to be expanded, despite that the overhead AC lines have already occupied much transmission space

58、. In a word, a new transmission approach is needed to solve these and other problems, the DC transmission, which is being used in several projects. Switching surges,

59、 for example, are the serious transient over voltages for the high voltage transmission lines. In case of AC transmission the peak values are 2 to 3 times norma

60、l crest voltage, where for DC transmission it is 1.7 times normal voltage. In addition to, the HVDC transmission has less corona and radio interferences than that of

61、 HV AC transmission line . In the following section, comparisons of the HVDC with the conventional AC transmission systems are carried out. A. Transmission Costs Comparis

62、on The cost of any AC or DC transmission lines usually includes the cost of main components, such as; right-of-way , which is the amount of landscape that might

63、 be occupied during installations of towers, conductors, insulators,terminal equipment, in addition to the operational costs such as losses of transmission lines. For given operati

64、onal constraints of both AC and DC lines, DC lines has the ability to carry as much power with two conductors as AC lines with three conductors of the same

65、 size. Moreover, DC lines require fewer infrastructures than AC lines, which will consequently reduce the cost of DC lines' installation. 1) Economic Considerations: For a

66、 given transmission task, feasibility studies are carried out before the fmal decision of implementing of a HY AC or HVDC system. Whenever long distance transmission is&#

67、160;discussed, the concept of "break-even distance" arises. This is where the savings in HVDC line costs offsets the higher converter station costs.2) Environmental1ssues: A&#

68、160;HVDC transmission system is basically environment friendly, because the improved energy transmission possibilities contribute to a more efficient utilization of existing power plants.

69、60;The land coverage and the associated right-of-way cost for a HYDC overhead transmission line is not as high as that of an AC line. This reduces the visual im

70、pact and saves land compensation for new projects. It is also possible to increase the power transmission capacity for existing rights of way. IV. ADVANTAGES AND DISADVAN

71、TAGES OF HVDC Although the rationale for selection of HVDC is often economic, there may be other reasons for its selection. In many cases more AC lines are need

72、ed to deliver the same power over the same distance due to system stability limitations.Furthermore, the long distance AC lines usually require intermediate switching stations 

73、;and reactive power compensation. This can increase the substation costs for AC transmission to the point where it is comparable to that for HVDC transmission 29. HVDC

74、60;may be the only feasible way to interconnect two asynchronous networks, reduce fault currents, utilize long cable circuits, bypass network congestion, share utility rights-of-way

75、0;without degradation of reliability, and mitigate environmental concerns. In all of these applications, HVDC nicely complements the AC transmission system. The following points highlig

76、ht different advantages and disadvantages of the HVDC systems 29. A. Advantages 1) Greater power per conductor. 2) Simpler line construction and smaller transmission towers. 3

77、) A bipolar HVDC line uses only two insulated sets of conductors, rather than three. 4) Narrower right-of-way. 5) Require only one-third the insulated sets of conductors&

78、#160;as a double circuit AC line. 6) Approximate savings of 30% in line construction. 7) Ground return can be used. 8) Each conductor can be operated as an inde

79、pendent circuit. 9) No charging current at steady state. 10) No Skin effect. 11) Lower line losses. 12) Line power factor is always unity. 13) Line does not req

80、uire reactive compensation. 14) Synchronous operation is not required. 15) May interconnect AC systems of different frequencies. 16) Controllability allows the HVDC to 'leap-frog

81、9; multiple 'choke-points' .17) Low short-circuit current on D.C line. 18) No physical restriction limiting the distance or power level for HVDC underground or submarine

82、60;cables 19) Can be used on shared ROW with other utilities 20) Considerable savings in installed cable and losses costs for underground or submarine cable systems  

83、;B. Disadvantages 1) Converters are expensive. 2) Converters require much reactive power. 3) Multi-terminal or network operation is not easy. 4) Converters generate harmonics and&#

84、160;hence, require filters. 5) Break-even distance is influenced by the costs of right-of-way and line construction with a typical value. .V. APPLICATIONS OF HVDC TRANSMISSION 

85、;SYSTEMS A.  Long Distance Bulk Power Transmission As shown above, HVDC transmission systems often provide a more economical alternative to AC transmission for exploiting the 

86、high electrical power generated at long-distances and bulk-power delivery from clean remote resources, such as;hydroelectric developments, mine-mouth power plants, solar,large-scale wind farms ,o

87、rmajor hot-rock geothermal energy.This ransmission is established using fewer lines with HVDC than with AC transmission. B. Cable Transmission Unlike the case for AC cables, there is no physical restriction lim

88、iting the distance or power level for HVDC underground or submarine cables. Underground cables can be used on shared ROW with other utilities, without impacting reliability

89、60;concerns over use of common corridors. Saving advantages of underground and submarine cable systems 'have been shown previously, knowing that depending on the power level

90、60;to be transmitted; these savings can offset the higher converter station costs at distances of 40 km or more. On the other hand, for AC transmission over a d

91、istance,there is a drop-off in cable capacity due to its reactive component of charging current, since cables have higher capacitances and lower inductances than AC overhead&#

92、160;lines.Although this can be compensated by intermediate shunt compensation for underground cables at increased expense,it is not practical to do so for submarine cables. C. Asynchronous Ties With HVDC transmission systems, interconnections can be

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論