(整理版)第2講 用樣本估計總體_第1頁
(整理版)第2講 用樣本估計總體_第2頁
(整理版)第2講 用樣本估計總體_第3頁
(整理版)第2講 用樣本估計總體_第4頁
(整理版)第2講 用樣本估計總體_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、第2講用樣本估計總體 分層a級根底達標演練(時間:30分鐘總分值:55分)一、選擇題(每題5分,共20分)1(·山東)在某次測量中得到的ab樣本數(shù)據(jù)恰好是a樣本數(shù)據(jù)每個都加2后所得數(shù)據(jù)那么a,b兩樣本的以下數(shù)字特征對應相同的是 ()a眾數(shù) b平均數(shù) c中位數(shù) d標準差解析對樣本中每個數(shù)據(jù)都加上一個非零常數(shù)時不改變樣本的方差和標準差,眾數(shù)、中位數(shù)、平均數(shù)都發(fā)生改變答案d2.(·陜西)對某商店一個月內(nèi)每天的顧客人數(shù)進行了統(tǒng) 計,得到樣本的莖葉圖(如下圖),那么該樣本的中位數(shù)、 眾數(shù)、極差分別是 ()a46,45,56 b46,45,53c47,45,56 d45,47,53解析

2、樣本共30個,中位數(shù)為46;顯然樣本數(shù)據(jù)出現(xiàn)次數(shù)最多的為45,故眾數(shù)為45;極差為681256,應選a.答案a3(·江西)小波一星期的總開支分布如圖(a)所示,一星期的食品開支如圖(b)所示,那么小波一星期的雞蛋開支占總開支的百分比為 ()a30% b10% c3% d不能確定解析由題圖(b)可知小波一星期的食品開支共計300元,其中雞蛋開支30元又由題圖(a)知,一周的食品開支占總開支的30%,那么可知一周總開支為1 000元,所以雞蛋開支占總開支的百分比為×100%3%.答案c4(·安徽)甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如下圖,那么

3、()a甲的成績的平均數(shù)小于乙的成績的平均數(shù)b甲的成績的中位數(shù)等于乙的成績的中位數(shù)c甲的成績的方差小于乙的成績的方差d甲的成績的極差小于乙的成績的極差解析由題意可知,甲的成績?yōu)?,5,6,7,8,乙的成績?yōu)?,5,5,6,9.所以甲、乙的成績的平均數(shù)均為6,a錯;甲、乙的成績的中位數(shù)分別為6,5,b錯;甲、乙的成績的方差分別為×(46)2(56)2(66)2(76)2(86)22,×(56)2(56)2(56)2(66)2(96)2,c對;甲、乙的成績的極差均為4,d錯答案c二、填空題(每題5分,共10分)5(·茂名二模)如圖是某賽季cba廣東東莞銀行隊甲、乙兩名籃

4、球運發(fā)動每場比賽得分的莖葉圖,那么甲、乙兩人比賽得分的中位數(shù)之和是_解析中位數(shù)是將數(shù)據(jù)按由大到小或由小到大的順序排列起來,最中間的一個數(shù)或中間兩個數(shù)的平均數(shù)甲比賽得分的中位數(shù)為34,乙比賽得分的中位數(shù)為24,故其和為58.答案58解析低于60分學生所占頻率為(0.0020.0060.012)×100.2,故低于60分的學生人數(shù)為1 000×0.2200,所以不低于60分的學生人數(shù)為1 000200800.答案800三、解答題(共25分)7(12分)(·濟南模擬)從某校高三年級800名男生中隨機抽取50名學生測量其身高,據(jù)測量,被測學生的身高全部在155 cm到19

5、5 cm之間將測量結(jié)果按如下方式分成8組:第一組155,160),第二組160,165),第八組190,195,以下圖是按上述分組得到的頻率分布直方圖的一局部第一組與第八組的人數(shù)相同,第七組與第六組的人數(shù)差恰好為第八組與第七組的人數(shù)差求以下頻率分布表中所標字母的值,并補充完成頻率分布直方圖頻率分布表:分組頻數(shù)頻率頻率/組距180,185)xyz185,190)mnp解由頻率分布直方圖可知前五組的頻率和是(0.0080.0160.040.040.06)×50.82,第八組的頻率是0.008×50.04,所以第六、七組的頻率和是10.820.040.14,所以第八組的人數(shù)為50

6、×0.042,第六、七組的總?cè)藬?shù)為50×0.147.由得xm7,mx2m,解得x4,m3,所以y0.08,n0.06,z0.016,p0.012.補充完成頻率分布直方圖如下圖8(13分)某良種培育基地正在培育一種小麥新品種a.將其與原有的一個優(yōu)良品種b進行對照試驗兩種小麥各種植了25畝,所得畝產(chǎn)數(shù)據(jù)(:千克)如下:品種a:357,359,367,368,375,388,392,399,400,405,412,414,415,421, 423,423,427, 430,430, 434,443,445, 445,451,454品種b:363,371,374,383,385,3

7、86,391,392,394,394,395,397, 397,400,401,401, 403, 406, 407,410, 412,415,416,422,430(1)作出數(shù)據(jù)的莖葉圖;(2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點?(3)通過觀察莖葉圖,對品種a與b的畝產(chǎn)量及其穩(wěn)定性進行比擬,寫出統(tǒng)計結(jié)論解(1)如以下圖(2)由于每個品種的數(shù)據(jù)都只有25個,樣本不大,畫莖葉圖很方便;此時莖葉圖不僅清晰明了地展示了數(shù)據(jù)的分布情況,便于比擬,沒有任何信息損失,而且還可以隨時記錄新的數(shù)據(jù)(3)通過觀察莖葉圖可以看出:品種a的畝產(chǎn)平均數(shù)(或均值)比品種b高;品種a的畝產(chǎn)標準差(或方差)比品種b大,故品

8、種a的畝產(chǎn)穩(wěn)定性較差分層b級創(chuàng)新能力提升1.(·陜西)從甲乙兩個城市分別隨機抽取16臺自動 售貨機,對其銷售額進行統(tǒng)計,統(tǒng)計數(shù)據(jù)用莖葉圖表 示(如下圖)設甲乙兩組數(shù)據(jù)的平均數(shù)分別為甲,乙,中位數(shù)分別為m甲,m乙,那么 ()a.甲<乙,m甲>m乙 b.甲<乙,m甲<m乙c.甲>乙,m甲>m乙 d.甲>乙,m甲<m乙解析甲(41433030382225271010141818568),乙(42434831323434382022232327101218).甲<乙又m甲20,m乙29,m甲<m乙答案b2(·哈爾濱模擬)一

9、個樣本容量為10的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列an,假設a38,且a1,a3,a7成等比數(shù)列,那么此樣本的平均數(shù)和中位數(shù)分別是 ()a13,12 b13,13 c12,13 d13,14解析設等差數(shù)列an的公差為d(d0),a38,a1a7(a3)264,(82d)(84d)64,(4d)(2d)8,2dd20,又d0,故d2,故樣本數(shù)據(jù)為4,6,8,10,12,14,16,18,20,22,樣本的平均數(shù)為13,中位數(shù)為13,應選b.答案b3(·北京西城一模)某年級120名學生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間將測試結(jié)果分成5組:13,14),14,15)

10、,15,16),16,17),17,18,得到如下圖的頻率分布直方圖如果從左到右的5個小矩形的面積之比為13763,那么成績在16,18的學生人數(shù)是_解析成績在16,18的學生的人數(shù)所占比例為,所以成績在16,18的學生人數(shù)為120×54.答案544總體的各個體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,假設要使該總體的方差最小,那么a,b的取值分別是_,_.解析中位數(shù)為10.5,10.5,ab21,10,s2(102)2(103)2×2(107)2(10a)2(10b)2(1012)2(1013.7)2(1018.3

11、)2(1020)2令y(10a)2(10b)22a242a22122,當a10.5時,y取最小值,方差s2也取最小值a10.5,b10.5.答案5汽車行業(yè)是碳排放量比擬大的行業(yè)之一,歐盟規(guī)定,從開始,對co2排放量超過130 g/km的mi型新車進行懲罰(視為排放量超標),某檢測對甲、乙兩類mi型品牌的新車各抽取了5輛進行co2排放量檢測,記錄如下(:g/km):甲80110120140150乙100120xy160經(jīng)測算發(fā)現(xiàn),乙類品牌車co2排放量的均值為乙120 g/km.(1)求甲類品牌汽車的排放量的平均值及方差;(2)假設乙類品牌汽車比甲類品牌汽車co2的排放量穩(wěn)定性好,求x的取值范圍

12、解(1)甲類品牌汽車的co2排放量的平均值甲120(g/km),甲類品牌汽車的co2排放量的方差s600.(2)由題意知乙類品牌汽車的co2排放量的平均值乙120(g/km),得xy220,故y220x,所以乙類品牌汽車的co2排放量的方差s,因為乙類品牌汽車比甲類品牌汽車co2的排放量穩(wěn)定性好,所以s<s,解得90<x<130.6.某有50名職工,現(xiàn)要從中抽取10名 職工,將全體職工隨機按150編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進行系統(tǒng)抽樣(1)假設第5組抽出的號碼為22,寫出所有被抽出職工的號碼;(2)分別統(tǒng)計這10名職工的體重(:公斤),獲得體重數(shù)據(jù)的莖葉圖如下圖,求該樣本的方差;(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(73公斤)的職工,求體重為76公斤的職工被抽取到的概率解(1)由題意,第5組抽出的號碼為22.因為k5×(51)22,所以第1組抽出的號碼應該為2,抽出的10名職工的號碼分別為2,7,12,17,22,27,32,37,42,47.(2)因為10名職工的平均體重為(81707376787962656759)71,所以樣本方差為:s2(102122252728292

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論