高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)及典型例題講解(共15頁(yè))_第1頁(yè)
高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)及典型例題講解(共15頁(yè))_第2頁(yè)
高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)及典型例題講解(共15頁(yè))_第3頁(yè)
高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)及典型例題講解(共15頁(yè))_第4頁(yè)
高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)及典型例題講解(共15頁(yè))_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)三角函數(shù)1、角的概念的推廣:平面內(nèi)一條射線(xiàn)繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所的圖形。按逆時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫正角,按順時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫負(fù)角,一條射線(xiàn)沒(méi)有作任何旋轉(zhuǎn)時(shí),稱(chēng)它形成一個(gè)零角。射線(xiàn)的起始位置稱(chēng)為始邊,終止位置稱(chēng)為終邊。2、象限角的概念:在直角坐標(biāo)系中,使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,角的終邊在第幾象限,就說(shuō)這個(gè)角是第幾象限的角。如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何象限。3. 終邊相同的角的表示: (1)終邊與終邊相同(的終邊在終邊所在射線(xiàn)上),注意:相等的角的終邊一定相同,終邊相同

2、的角不一定相等.如與角的終邊相同,且絕對(duì)值最小的角的度數(shù)是,合弧度。(答:;)(2)終邊與終邊共線(xiàn)(的終邊在終邊所在直線(xiàn)上) .(3)終邊與終邊關(guān)于軸對(duì)稱(chēng).(4)終邊與終邊關(guān)于軸對(duì)稱(chēng).(5)終邊與終邊關(guān)于原點(diǎn)對(duì)稱(chēng).(6)終邊在軸上的角可表示為:;終邊在軸上的角可表示為:;終邊在坐標(biāo)軸上的角可表示為:.如的終邊與的終邊關(guān)于直線(xiàn)對(duì)稱(chēng),則_。(答:)4、與的終邊關(guān)系:由“兩等分各象限、一二三四”確定.如若是第二象限角,則是第_象限角(答:一、三)5.弧長(zhǎng)公式:,扇形面積公式:,1弧度(1rad). 如已知扇形AOB的周長(zhǎng)是6cm,該扇形的中心角是1弧度,求該扇形的面積。(答:2)6、任意角的三角函數(shù)

3、的定義:設(shè)是任意一個(gè)角,P是的終邊上的任意一點(diǎn)(異于原點(diǎn)),它與原點(diǎn)的距離是,那么,。三角函數(shù)值只與角的大小有關(guān),而與終邊上點(diǎn)P的位置無(wú)關(guān)。如(1)已知角的終邊經(jīng)過(guò)點(diǎn)P(5,12),則的值為。(答:);(2)設(shè)是第三、四象限角,則的取值范圍是_(答:(1,);(3)若,試判斷的符號(hào)(答:負(fù))7.三角函數(shù)線(xiàn)的特征是:正弦線(xiàn)MP“站在軸上(起點(diǎn)在軸上)”、余弦線(xiàn)OM“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)AT“站在點(diǎn)處(起點(diǎn)是)”.三角函數(shù)線(xiàn)的重要應(yīng)用是比較三角函數(shù)值的大小和解三角不等式。如(1)若,則的大小關(guān)系為_(kāi)(答:);(2)若為銳角,則的大小關(guān)系為_(kāi) (答:);(3)函數(shù)的定義域是_(答:)8.

4、特殊角的三角函數(shù)值:30°45°60°0°90°180°270°15°75°010110101002-2+1002+2-9. 同角三角函數(shù)的基本關(guān)系式:(1)平方關(guān)系:(2)倒數(shù)關(guān)系:sincsc=1,cossec=1,tancot=1,(3)商數(shù)關(guān)系:同角三角函數(shù)的基本關(guān)系式的主要應(yīng)用是,已知一個(gè)角的三角函數(shù)值,求此角的其它三角函數(shù)值。在運(yùn)用平方關(guān)系解題時(shí),要根據(jù)已知角的范圍和三角函數(shù)的取值,盡可能地壓縮角的范圍,以便進(jìn)行定號(hào);在具體求三角函數(shù)值時(shí),一般不需用同角三角函數(shù)的基本關(guān)系式,而是先根據(jù)角的范圍

5、確定三角函數(shù)值的符號(hào),再利用解直角三角形求出此三角函數(shù)值的絕對(duì)值。如(1)函數(shù)的值的符號(hào)為_(kāi)(答:大于0);(2)若,則使成立的的取值范圍是_(答:);(3)已知,則_(答:);(4)已知,則_;_(答:;);(5)已知,則等于A、B、C、D、(答:B);(6)已知,則的值為_(kāi)(答:1)。10.三角函數(shù)誘導(dǎo)公式()的本質(zhì)是:奇變偶不變(對(duì)而言,指取奇數(shù)或偶數(shù)),符號(hào)看象限(看原函數(shù),同時(shí)可把看成是銳角).誘導(dǎo)公式的應(yīng)用是求任意角的三角函數(shù)值,其一般步驟:(1)負(fù)角變正角,再寫(xiě)成2k+,;(2)轉(zhuǎn)化為銳角三角函數(shù)。如(1)的值為_(kāi)(答:);(2)已知,則_,若為第二象限角,則_。(答:;)11、

6、兩角和與差的正弦、余弦、正切公式及倍角公式: 如(1)下列各式中,值為的是 A、 B、 C、D、(答:C);(2)命題P:,命題Q:,則P是Q的 A、充要條件B、充分不必要條件C、必要不充分條件D、既不充分也不必要條件(答:C);(3)已知,那么的值為_(kāi)(答:);(4)的值是_(答:4);(5)已知,求的值(用a表示)甲求得的結(jié)果是,乙求得的結(jié)果是,對(duì)甲、乙求得的結(jié)果的正確性你的判斷是_(答:甲、乙都對(duì))12. 三角函數(shù)的化簡(jiǎn)、計(jì)算、證明的恒等變形的基本思路是:一角二名三結(jié)構(gòu)。即首先觀察角與角之間的關(guān)系,注意角的一些常用變式,角的變換是三角函數(shù)變換的核心!第二看函數(shù)名稱(chēng)之間的關(guān)系,通常“切化弦

7、”;第三觀察代數(shù)式的結(jié)構(gòu)特點(diǎn)。基本的技巧有:(1)巧變角(已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換. 如,等),如(1)已知,那么的值是_(答:);(2)已知,且,求的值(答:);(3)已知為銳角,則與的函數(shù)關(guān)系為_(kāi)(答:)(2)三角函數(shù)名互化(切割化弦),如(1)求值(答:1);(2)已知,求的值(答:)(3)公式變形使用(。如(1)已知A、B為銳角,且滿(mǎn)足,則_(答:);(2)設(shè)中,則此三角形是_三角形(答:等邊)(4)三角函數(shù)次數(shù)的降升(降冪公式:,與升冪公式:,)。如(1)若,化簡(jiǎn)為_(kāi)(答:);(2)函數(shù)的單調(diào)遞增區(qū)間為_(kāi)(答:)(5)式子結(jié)構(gòu)

8、的轉(zhuǎn)化(對(duì)角、函數(shù)名、式子結(jié)構(gòu)化同)。如(1) (答:);(2)求證:;(3)化簡(jiǎn):(答:)(6)常值變換主要指“1”的變換(等),如已知,求(答:).(7)正余弦“三兄妹”的內(nèi)存聯(lián)系“知一求二”,如(1)若 ,則 _(答:),特別提醒:這里;(2)若,求的值。(答:);(3)已知,試用表示的值(答:)。13、輔助角公式中輔助角的確定:(其中角所在的象限由a, b的符號(hào)確定,角的值由確定)在求最值、化簡(jiǎn)時(shí)起著重要作用。如(1)若方程有實(shí)數(shù)解,則的取值范圍是_.(答:2,2);(2)當(dāng)函數(shù)取得最大值時(shí),的值是_(答:);(3)如果是奇函數(shù),則=(答:2);(4)求值:_(答:32)14、正弦函數(shù)

9、和余弦函數(shù)的圖象:正弦函數(shù)和余弦函數(shù)圖象的作圖方法:五點(diǎn)法:先取橫坐標(biāo)分別為0,的五點(diǎn),再用光滑的曲線(xiàn)把這五點(diǎn)連接起來(lái),就得到正弦曲線(xiàn)和余弦曲線(xiàn)在一個(gè)周期內(nèi)的圖象。15、正弦函數(shù)、余弦函數(shù)的性質(zhì):(1)定義域:都是R。(2)值域:都是,對(duì),當(dāng)時(shí),取最大值1;當(dāng)時(shí),取最小值1;對(duì),當(dāng)時(shí),取最大值1,當(dāng)時(shí),取最小值1。如(1)若函數(shù)的最大值為,最小值為,則_,(答:或);(2)函數(shù)()的值域是_(答:1, 2);(3)若,則的最大值和最小值分別是_ 、_(答:7;5);(4)函數(shù)的最小值是_,此時(shí)_(答:2;);(5)己知,求的變化范圍(答:);(6)若,求的最大、最小值(答:,)。特別提醒:在解

10、含有正余弦函數(shù)的問(wèn)題時(shí),你深入挖掘正余弦函數(shù)的有界性了嗎?(3)周期性:、的最小正周期都是2;和的最小正周期都是。如(1)若,則_(答:0);(2) 函數(shù)的最小正周期為_(kāi)(答:);(3) 設(shè)函數(shù),若對(duì)任意都有成立,則的最小值為_(kāi)(答:2)(4)奇偶性與對(duì)稱(chēng)性:正弦函數(shù)是奇函數(shù),對(duì)稱(chēng)中心是,對(duì)稱(chēng)軸是直線(xiàn);余弦函數(shù)是偶函數(shù),對(duì)稱(chēng)中心是,對(duì)稱(chēng)軸是直線(xiàn)(正(余)弦型函數(shù)的對(duì)稱(chēng)軸為過(guò)最高點(diǎn)或最低點(diǎn)且垂直于軸的直線(xiàn),對(duì)稱(chēng)中心為圖象與軸的交點(diǎn))。如(1)函數(shù)的奇偶性是_、(答:偶函數(shù));(2)已知函數(shù)為常數(shù)),且,則_(答:5);(3)函數(shù)的圖象的對(duì)稱(chēng)中心和對(duì)稱(chēng)軸分別是_、_(答:、);(4)已知為偶函數(shù),

11、求的值。(答:)(5)單調(diào)性:上單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞減,在上單調(diào)遞增。特別提醒,別忘了! 16、形如的函數(shù):(1)幾個(gè)物理量:A振幅;頻率(周期的倒數(shù));相位;初相;(2)函數(shù)表達(dá)式的確定:A由最值確定;由周期確定;由圖象上的特殊點(diǎn)確定,如,的圖象如圖所示,則_(答:);(3)函數(shù)圖象的畫(huà)法:“五點(diǎn)法”設(shè),令0,求出相應(yīng)的值,計(jì)算得出五點(diǎn)的坐標(biāo),描點(diǎn)后得出圖象;圖象變換法:這是作函數(shù)簡(jiǎn)圖常用方法。(4)函數(shù)的圖象與圖象間的關(guān)系:函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)向左(>0)或向右(<0)平移個(gè)單位得的圖象;函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得到函數(shù)的圖象;函數(shù)圖象的橫坐

12、標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的A倍,得到函數(shù)的圖象;函數(shù)圖象的橫坐標(biāo)不變,縱坐標(biāo)向上()或向下(),得到的圖象。要特別注意,若由得到的圖象,則向左或向右平移應(yīng)平移個(gè)單位,如(1)函數(shù)的圖象經(jīng)過(guò)怎樣的變換才能得到的圖象?(答:向上平移1個(gè)單位得的圖象,再向左平移個(gè)單位得的圖象,橫坐標(biāo)擴(kuò)大到原來(lái)的2倍得的圖象,最后將縱坐標(biāo)縮小到原來(lái)的即得的圖象);(2) 要得到函數(shù)的圖象,只需把函數(shù)的圖象向_平移_個(gè)單位(答:左;);(3)將函數(shù)圖像,按向量平移后得到的函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱(chēng),這樣的向量是否唯一?若唯一,求出;若不唯一,求出模最小的向量(答:存在但不唯一,模最小的向量);(4)若函數(shù)的圖象與直線(xiàn)有且僅有四

13、個(gè)不同的交點(diǎn),則的取值范圍是(答:)(5)研究函數(shù)性質(zhì)的方法:類(lèi)比于研究的性質(zhì),只需將中的看成中的,但在求的單調(diào)區(qū)間時(shí),要特別注意A和的符號(hào),通過(guò)誘導(dǎo)公式先將化正。如(1)函數(shù)的遞減區(qū)間是_(答:);(2)的遞減區(qū)間是_(答:);(3)設(shè)函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),它的周期是,則A、 B、在區(qū)間上是減函數(shù)C、 D、的最大值是A(答:C);(4)對(duì)于函數(shù)給出下列結(jié)論:圖象關(guān)于原點(diǎn)成中心對(duì)稱(chēng);圖象關(guān)于直線(xiàn)成軸對(duì)稱(chēng);圖象可由函數(shù)的圖像向左平移個(gè)單位得到;圖像向左平移個(gè)單位,即得到函數(shù)的圖像。其中正確結(jié)論是_(答:);(5)已知函數(shù)圖象與直線(xiàn)的交點(diǎn)中,距離最近兩點(diǎn)間的距離為,那么此函數(shù)的周期是_(答:)1

14、7、正切函數(shù)的圖象和性質(zhì):(1)定義域:。遇到有關(guān)正切函數(shù)問(wèn)題時(shí),你注意到正切函數(shù)的定義域了嗎?(2)值域是R,在上面定義域上無(wú)最大值也無(wú)最小值;(3)周期性:是周期函數(shù)且周期是,它與直線(xiàn)的兩個(gè)相鄰交點(diǎn)之間的距離是一個(gè)周期。絕對(duì)值或平方對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變,其它不定。 如的周期都是, 但的周期為,而,的周期不變;(4)奇偶性與對(duì)稱(chēng)性:是奇函數(shù),對(duì)稱(chēng)中心是,特別提醒:正(余)切型函數(shù)的對(duì)稱(chēng)中心有兩類(lèi):一類(lèi)是圖象與軸的交點(diǎn),另一類(lèi)是漸近線(xiàn)與軸的交點(diǎn),但無(wú)對(duì)稱(chēng)軸,這是與正

15、弦、余弦函數(shù)的不同之處。(5)單調(diào)性:正切函數(shù)在開(kāi)區(qū)間內(nèi)都是增函數(shù)。但要注意在整個(gè)定義域上不具有單調(diào)性。如下圖:18. 三角形中的有關(guān)公式: (1)內(nèi)角和定理:三角形三角和為,這是三角形中三角函數(shù)問(wèn)題的特殊性,解題可不能忘記!任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余.銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方.(2)正弦定理:(R為三角形外接圓的半徑).注意:正弦定理的一些變式:;已知三角形兩邊一對(duì)角,求解三角形時(shí),若運(yùn)用正弦定理,則務(wù)必注意可能有兩解.(3)余弦定理:等,常選用余弦定理鑒定三角形的形狀. (4)面積公式:

16、(其中為三角形內(nèi)切圓半徑).如中,若,判斷的形狀(答:直角三角形)。特別提醒:(1)求解三角形中的問(wèn)題時(shí),一定要注意這個(gè)特殊性:;(2)求解三角形中含有邊角混合關(guān)系的問(wèn)題時(shí),常運(yùn)用正弦定理、余弦定理實(shí)現(xiàn)邊角互化。如(1)中,A、B的對(duì)邊分別是,且,那么滿(mǎn)足條件的 A、 有一個(gè)解 B、有兩個(gè)解 C、無(wú)解 D、不能確定(答:C);(2)在中,AB是成立的_條件(答:充要);(3)在中, ,則_(答:);(4)在中,分別是角A、B、C所對(duì)的邊,若,則_(答:);(5)在中,若其面積,則=_(答:);(6)在中,這個(gè)三角形的面積為,則外接圓的直徑是_(答:);(7)在ABC中,a、b、c是角A、B、C的對(duì)邊,= ,的最大值為(答:);(8)在ABC中AB=1,BC=2,則角C的取值范圍是(答:);(9)設(shè)O是銳角三角形ABC的外心,若,且的面積滿(mǎn)足關(guān)系式,求(答:)19.反三角函數(shù):(1)反三角函數(shù)的定義(以反正弦函數(shù)為例):表示

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論