


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、AB第4題第一章特殊平行四邊形復(fù)習(xí)一、菱形定義:一組鄰邊相等的平行四邊形是菱形定理:1、菱形的四條邊相等2、菱形的對角線互相垂直例1在菱形ABCD中,對角線 AC與BD相交于點0, . BAD =60°,BD = 6,則菱形的邊長AB為,對角線AC的為練習(xí):1、在菱形ABCD中,對角線 AC與BD相交于點0,已知 AB =5cm, AO = 4cm,則 BD=.三角形2、已知:如圖,在菱形 ABCD中,.BAD =2 B,貝V ABC是3、如圖,在菱形 ABCD中,BD =6, AC =8,則菱形ABCD的周長為 4、已知:如圖,在菱形ABCD中,對角線 AC與BD相交于點 0, D
2、AB = 80°,則NBAC =,厶 DBC =判定定理:1、對角線互相垂直的平行四邊形是菱形2、四邊相等的四邊形是菱形例2 已知:如圖,在 口ABCD中,對角線 AC與BD相較于點0,AC _ BD 求證:四邊形ABCD是菱形.已知:如圖,在口ABCD中,對角線 AC與BD相交于點 0,AB = 5, 0A = 2,0B =1.求證:四邊形 ABCD是菱形.練習(xí):點E,0,F(xiàn)。求證:四邊形 AFCE是菱形。AD,AC, BC,相交于1、已知:如圖,在 UABCD中,對角線 AC的垂直平分線分別于2、如圖,在菱形 ABCD中,對角線 AC與BD相交于點 0,點E,F(xiàn),G,H分別是0A
3、,OB,0C,0D的中點。求證:四邊形 EFGH是菱形.3、如圖,四邊形 ABCD是邊長為13cm的菱形,其中對角線 BD長10cm。求:(1)對角線AC的長度;(2)菱形ABCD的面積.隨堂練習(xí):1菱形ABCD的周長為40cm,它的一條對角線長為 10cm。(1)求這個菱形的每一個內(nèi)角度數(shù);(2 )求這個菱形另一條對角線的長2、如圖,在Rt ABC中,.ACB =90°, D為AB的中點,AE / CD ,CE/AB,試判斷四邊形ADCE的形狀,并證明你的結(jié)論.E 3、如圖,在菱形 ABCD中,E,F(xiàn)分別是AB和BC上的點,且 BE=BF。求證:(1) :ADE 三 CDF ;(2
4、) DEF = DFE.4、如圖,在菱形 ABCD中,對角線 AC與BD相交于點 0,且AC=16,BD=12,求菱形ABCD 的高 DH。5、已知:如圖,在四邊形 ABCD中,AD=BC,點E, F, G, H分別是AB , CD, AC , BD的中點。求證:四邊形 EGFH是菱形.二、矩形定義:有一個內(nèi)角是直角的平行四邊形是矩形定理:1、矩形的四個角是直角2、矩形的對角線相等3、直角三角形斜邊上的中線等于斜邊的一半練習(xí):這個矩形對角線的長為AB=6,OA=4。貝U BD=如下圖,在矩形例2 如右圖,在矩形1、 一個矩形的對角線長為6,對角線與一邊的夾角是 45°,求這個矩形的相
5、鄰兩邊長分別為。2、 一個矩形的兩條對角線的一個夾角為60°,對角線長為15,此矩形較短邊的長為 3、如下圖,矩形ABCD中, A的平分線AD交邊CD于點E,已知DE =4, CE = 3,則此矩形的周長為E判斷定理:1對角線相等的四邊形是矩形2、有三個角是直角的四邊形是矩形例3 如圖,在口ABCD中,AC, BD是它的對角線, AC=BD。求證:四邊形ABCD是矩形例4如圖,在227ABCD中,對角線AC與BD相交于點0, .IABO是等邊三角形,AB=4,求口ABCD的面積。練習(xí):1 如圖,在口ABCD中,M是AD邊的中點,且 MB=MC。D求證:四邊形 ABCD是矩形。2、如圖
6、,在 ABC中,AD為BC邊上的中線,延長 AD至E,使DE=AD,連接BE,CE。(1)試判斷四邊形ABEC的形狀;(2)當(dāng) ABC滿足什么條件時,四邊形 ABEC是矩形?3、如圖,點B在MN上,過AB的中點0作MN的平行線,分別交 ZABM的平分線和.AB 的平分線于點C, D。試判斷四邊形 ABCD的形狀,并證明你的結(jié)論。4、如圖,在矩形 ABCD中,AD=6,對角線 AC與BD相交,AE _ BD,垂足為E,ED =3BE。貝U AE=。5、如圖,在 ABC中,AB二AC, AD是 ABC的一條角平分線, AN為.CAM的平分線,CE _ AN,垂足為E。求證:四邊形 ADCE是矩形。
7、D隨堂練習(xí):1如圖,四邊形 ABCD由兩個全等的等邊三角形 ABD和CBD組成,M、N分別是BC和AD的中點,求證:是四邊形 BMDN是矩形。2、如圖,在矩形 ABCD中,對角線 AC與BD相交于點0,ACB = 30°,BD = 4,求矩形ABCD的面積。3、如圖,在矩形 ABCD中,對角線 AC與BD相交,過點A作BD的垂線,垂足為 E,已知 N EAD =3ZBAE,貝V 三 EAO =。求證:四邊形 ADCE是矩形.4、如圖,在.IABC中,AB二AC, D為BC的中點,四邊形ABDE是平行四邊形。5、如圖,在矩形 ABCD中,AB=3 , AD=4 ,P是AD上不與A和D重
8、合的一個動點,過點P分別作AC和BD的垂線,垂足為 E,F(xiàn)。貝H PE+PF=。三、正方形定義:有一組領(lǐng)邊相等,并且有一個角是直角的平行四邊形叫做正方形。定理:1、正方形的四個角都是直角,四條邊相等2、正方形的對角線相等且互相平分例1如圖,在正方形 ABCD中,E為CD邊上一點,F(xiàn)為BC延長線上一點,且 CE=CF。BE與DF之間有怎樣的關(guān)系?請說明理由。DC練習(xí):1如右圖,在正方形 ABCD中,點F為對角線AC上一點, 連接BF,DF。則圖中有 對全等三角形。2、對角線長為2cm的正方形,邊長為 3、如右圖,四邊形 ABCD是正方形,CBE是等邊三角形,則NAEB =。4、如圖,正方形 AB
9、CD中,PD = QC,證明:BP = AQ且BP _ AQ .判定定理:1對角線相等的菱形是正方形2、對角線垂直的矩形是正方形3、有一個角是直角的菱形是正方形練習(xí):1如圖,E,F(xiàn)是正方形ABCD的對角線BD上的兩點,且 BE=DF。求證:四邊形 AECF是菱形。2、如圖,在正方形ABCD中,E,F(xiàn),G,H分別在它的四條邊上,證明:四邊形 EFGH是正方形且 AE 二 BF 二 CG 二 DH 。3、如圖,正方形ABCD的對角線相交于點 0,邊長相等的正方形 A'B'C'O與正方形ABCD的邊長相等。在正方形A'B'C'O繞點0旋轉(zhuǎn)的過程中,兩個
10、正方形重疊部分的面積為,已知正方形邊長為 4。綜合練習(xí)1、一個菱形的兩條對角線分別為4和8,則它的邊長為 2、如右圖,若四邊形且 OA=OB=OC=OD=則四邊形ABCD是DC3、一個菱形的周長是200cm,一條對角線長,此菱形的面積為 。4、如圖,正方形 ABCD中,E是BC延長線上一點,且 AC=EC,則藝 DAE =。平行線,交AB于點E,交5、如圖,AD是 ABC的角平分線,過點D分別作AC和ABAC于點F,求證:四邊形 AEDF是菱形6、已知正方形的對角線的長為a,則這個正方形的周長為 ,面積為7、已知:“ABC的兩條高分別為 BE,CF,點M為BC的中點,求證:ME=MF8、如圖,在矩形 ABCD中,對角線 AC和BD相交于點0,過點C作BD的平行線,過點D作AC的平行線,兩線相交于點P,求證:四邊形 CODP是菱形RC9、如圖,在矩形 ABCD中,AM二BP二CN二DQ,求證:四邊形 MPNQ是矩形E10、如圖,在 Rt ABC 中,.ACB =90o,CD 是 ABC的角平分線, DE _BC,DF _AC,垂足分別為E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利水電工程人才計劃試題及答案
- 2025班組安全培訓(xùn)考試試題帶答案(研優(yōu)卷)
- 工程項目變更管理的典型案例試題及答案
- 經(jīng)濟(jì)法的現(xiàn)代性試題及答案
- 2025年日常安全培訓(xùn)考試試題帶答案(研優(yōu)卷)
- 2025新進(jìn)廠職工安全培訓(xùn)考試試題及參考答案【突破訓(xùn)練】
- 2024-2025各個班組三級安全培訓(xùn)考試試題及參考答案(預(yù)熱題)
- 2025年安全管理員安全培訓(xùn)考試試題含答案【鞏固】
- 中級經(jīng)濟(jì)師考試重點考查內(nèi)容試題及答案
- 公共關(guān)系的案例分析框架試題及答案
- 常見病媒生物分類鑒定
- 畢業(yè)論文-原油電脫水方法與機(jī)理的研究
- 陜西省2022年普通高中學(xué)業(yè)水平考試(真題)
- DBJ∕T13-374-2021 福建省鋼筋桁架疊合樓板技術(shù)標(biāo)準(zhǔn)
- 事故池管理的有關(guān)規(guī)定
- 2021-2022學(xué)年甘肅省天水市第一中學(xué)高一下學(xué)期第二階段考物理試題(原卷版)
- 重慶市參加企業(yè)職工基本養(yǎng)老保險人員退休審批表
- 混凝土結(jié)構(gòu)課程設(shè)計244
- GE全球供應(yīng)鏈的管理與實踐
- 跨國道防護(hù)棚方案
- 挖掘機(jī)入場驗收表(共1頁)
評論
0/150
提交評論