小升初知識點匯總(數(shù)學(xué))_第1頁
小升初知識點匯總(數(shù)學(xué))_第2頁
小升初知識點匯總(數(shù)學(xué))_第3頁
小升初知識點匯總(數(shù)學(xué))_第4頁
小升初知識點匯總(數(shù)學(xué))_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、小升初知識點匯總第一章 數(shù)與代數(shù)數(shù)的認識第一節(jié)、 數(shù)的意義及計數(shù)單位知識要點梳理數(shù)的意義及分類1、 整數(shù)的意義:像 -3, -2, -1,0,1,2,3這樣的數(shù)統(tǒng)稱整數(shù),整數(shù)的個數(shù)是無限的,沒有最小的整數(shù),也沒有最大的整數(shù)。自然數(shù)是整數(shù)的一部分。2、 自然數(shù)的意義:在數(shù)物體個數(shù)的時候,用來表示物體個數(shù)的1,2,3,4,5 叫做自然數(shù)。一個物體也沒有用 0 來表示。 自然數(shù)的個數(shù)是無限的。 最小的自然數(shù)是0., 沒有最大的自然數(shù)。3、 正數(shù)與負數(shù)的意義:像1,2,3,這樣的數(shù)叫做正數(shù);像-3, -2, -1這樣的數(shù)叫做負數(shù)。4、 分數(shù)的意義:把單位“ 1 ”平均分成若干份,表示這樣的一份或者幾份

2、的數(shù)叫做分數(shù)。( 1) 分數(shù)單位:把單位“1”平均分成若干份,表示這樣一份的數(shù)就是這個分數(shù)的單位。一個分數(shù)的分母是幾,它的分數(shù)單位就是幾分之一;分子是幾,它就有幾個這樣的分數(shù)單位。( 2) 分數(shù)的分類:真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。帶分數(shù):由整數(shù)部分和真分數(shù)部分組成的分數(shù)。5、 百分數(shù)的意義: 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù), 也叫做百分率或百分比。 百分數(shù)通常用“% ”表示。分數(shù)和百分數(shù)的關(guān)系: 分數(shù)既可以表示一個數(shù), 也可以表示兩個數(shù)的比; 而百分數(shù)是一種特殊的分數(shù) ; 分數(shù)的后

3、面可以有單位,而百分數(shù)的后面絕不能有單位。 6、小數(shù)的意義:把整數(shù)“ 1”平均分成10份,100份,1000份這樣的1份就是十分之一、百分之一、千分之一可以用小數(shù)表示。7、小數(shù)的分類:純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。有限小數(shù): 小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0.23都是有限小數(shù)。無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如:4.333.1415926無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無

4、規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如:循環(huán)小數(shù): 一個數(shù)的小數(shù)部分, 有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn), 這個數(shù)叫做循環(huán)小數(shù)。 例 如:3.5550.033312.109109一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如:3.99的循環(huán)節(jié)是 9 ”,0.5454的循環(huán)節(jié)是54 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如:3.1110.5656混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。3.12220.03333寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各

5、點一個圓點。如果循環(huán) 節(jié)只有一個數(shù)字,就只在它的上面點一個點。例如: 3.777簡寫 作0.5302302簡寫作。計數(shù)單位和數(shù)位:都是計數(shù)單位。1、計數(shù)單位:個、十、百 以及十分之一、百分之一2、數(shù)位:各個計數(shù)單位所占的位置,叫做數(shù)位。3、數(shù)位順序表:整數(shù)和小數(shù)都是按照十進制計數(shù)法寫出的數(shù)。整數(shù)部分小 數(shù) 占 八、小數(shù)部分億級萬級個級數(shù)位.千 億位百 億 位十 億 位億位千 萬 位百 萬 位十 萬 位萬 位千 位百 位十 位個 位十 分 位百 分 位千 分 位萬 分 位.計 數(shù) 單 位千 億百億十億億千萬百萬十萬萬千百十個十 分 之百 分 之千 分 之萬 分 之第二節(jié)、數(shù)的讀寫及大小比較知識要

6、點梳理1、 數(shù)的讀、寫法1、 整數(shù)的讀、寫法讀法:從高位到低位,一級一級地讀,每一級末尾的0都不讀,其他數(shù)位不管,連續(xù)有幾個 0,都只讀一個零。讀前通常把這個數(shù)從個位起每四位分級。寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有就在那個數(shù)位上寫0。2、 小數(shù)的讀寫法讀法:讀小數(shù)的時候,從左往右,整數(shù)部分按整數(shù)來讀,小數(shù)點讀作“點”,小數(shù)部分從高位到低位順次讀出每一個數(shù)位上的數(shù)字,即使是連續(xù)的0,也要一次讀出來。寫法:寫小數(shù)時,也是從左往右,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位的右下角,小數(shù)部分從高位到低位順次寫出每個數(shù)位上的數(shù)字。3、 分數(shù)的讀寫法:讀法:讀分數(shù)時,先讀分數(shù)中

7、的分母上的數(shù),再讀“分之”,最后讀分子上的數(shù)。讀帶分數(shù)時,要先讀整數(shù)部分,中間加一個“又”字,最后讀真分數(shù)部分。寫法:寫分數(shù)時,先寫出分數(shù)線,分母寫在分數(shù)線下面,分子寫在分數(shù)線下面。寫帶分數(shù)時,要先寫整數(shù)部分,再寫真分數(shù)部分。2、 數(shù)的改寫1 、把多位數(shù)改寫成以“萬”或“億”為單位的數(shù)一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用萬”或億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。(1)準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000改寫成以萬做單位的數(shù)是 125430萬;改寫成

8、 以億做單位 的數(shù) 12.543 億。(2)近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是 13億。(3)四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略345900萬后面的尾數(shù)約是 35萬。省略4725097420億后面的尾數(shù)約是 47億。2、求小數(shù)的近似數(shù)連接。根據(jù)要求,要把小數(shù)保留到哪一位,就把這一位后面的尾數(shù)按照“四舍五入”法省略,中間用2 、假分數(shù)與帶分數(shù)或整數(shù)之間的互化(1)假分數(shù)化成整數(shù)或者帶

9、分數(shù)的方法。根據(jù)分數(shù)與除法的關(guān)系:用假分數(shù)的分子除以分母,如果分子是 分母的整數(shù)倍,所得的商就是整數(shù);如果分子不是分母的整數(shù),所得的商就是帶分數(shù)的整數(shù)部分,余 數(shù)就是真分數(shù)部分的分子,原分母不變。(2)整數(shù)化成假分數(shù)的方法。把整數(shù)(0除外)化成假分數(shù),用指定的分母(0除外)做分母,用分母和整 數(shù)的乘積做分子。(3)帶分數(shù)化成假分數(shù)的方法。把帶分數(shù)化成假分數(shù),用分母和整數(shù)的乘積再加上原來的分子的和做分子, 原分母不變。3、分數(shù)、小數(shù)與百分數(shù)之間的互化3 .小數(shù)化成分數(shù):原來有幾位小數(shù),就在 1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能 約分的要約分。4 .分數(shù)化成小數(shù):用分母去除分子

10、。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一 般保留三位小數(shù)。5 . 一個最簡分數(shù),如果分母中除了 2和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果 分母中含有2和5以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。6 .小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。7 .百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。8 .分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。9 .百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。3、 數(shù)的大小比較1、 整數(shù)的大小比較比較整

11、數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最 高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。2、 小數(shù)的大小比較先看它們的整數(shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大3、 分數(shù)的大小比較分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。第三節(jié)、數(shù)的性質(zhì)知識要點梳理1、 分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘以或者同時除以相同的數(shù)(0除外),分數(shù)的大小不變2、 小數(shù)的基本性質(zhì)(1) 小數(shù)的基本性

12、質(zhì):小數(shù)的末尾添上 0或者去掉0,小數(shù)的大小不變(2) 小數(shù)的基本性質(zhì)和分數(shù)的基本性質(zhì)的關(guān)系:小數(shù)的基本性質(zhì)與分數(shù)的基本性質(zhì)是一致的。例,770700如:0 70 700 700 1010010003、 小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律:小數(shù)點向右移動一位、兩位、三位該數(shù)就擴大到原來的10倍、100倍、1000倍小數(shù)點向左移動位、兩位、三位“一 一“ 111、,該數(shù)就縮小到原來的 ,反之亦然。10 100 1000第四節(jié)、因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)知識要點梳理1、 因數(shù)和倍數(shù)的意義:已知a,b,c均為正整數(shù),且a*b=c,那么c就是a和b的倍數(shù),a和b就是c的因數(shù)。倍數(shù)和因數(shù)是相互依存 的。一

13、個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)既是它本身的因數(shù),也是它本身的倍數(shù)。2、2,3,5的倍數(shù)的特征:(1) 2的倍數(shù)的特征:個位上是 0,2,4,6,8。(2) 5的倍數(shù)的特征:個位上是 0,5。(3) 3的倍數(shù)的特征:.各個數(shù)位上的數(shù)字之和是 3的倍數(shù)。(4)既是2又是5的倍數(shù)的特征:個位上是 0。3、奇數(shù)和偶數(shù)奇數(shù):不能被2整除的數(shù)叫做奇數(shù)。偶數(shù):能被2整除的數(shù)叫做偶數(shù)。0也是偶數(shù)。自然數(shù)按能否被 2整除的特征可分為奇數(shù)和偶數(shù)。4、質(zhì)數(shù)和合數(shù)一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫

14、做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、 13、 17、 19、 23、 29、 31、 37、 41、 43、 47、 53、 59、 61、 67、 71、 73、 79、 83、 89、 97。一個數(shù),如果除了 1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如4、6、8、9、12都是合數(shù)。幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12; 18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數(shù),6 是它們的最大公約數(shù)。公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),

15、有下列幾種情況:1和任何自然數(shù)互質(zhì)。相鄰的兩個自然數(shù)互質(zhì)。兩個不同的質(zhì)數(shù)互質(zhì)。當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。兩個合數(shù)的公約數(shù)只有 1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有 2、4、6、8、10、12、14、16、18 3的倍數(shù)有3、6、9、12、15、18其中6、12、18是2、3的公倍數(shù),6是它們的最小公倍數(shù)。如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就

16、是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。5 分解質(zhì)因數(shù)每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3X5, 3和5叫做15的質(zhì)因數(shù)。把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例如把 28 分解質(zhì)因數(shù):28 2 2 7二、數(shù)的運算第一節(jié)、 整數(shù)、小數(shù)、分數(shù)四則運算的意義(一)整數(shù)四則運算1、整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。- 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。- 加數(shù) +加數(shù)=

17、和一個加數(shù)=和另一個加數(shù)2、整數(shù)減法:已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。- 在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)- 是總數(shù),減數(shù)和差分別是部分數(shù)。加法和減法互為逆運算。3、整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。- 在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。- 在乘法里,0 和任何數(shù)相乘都得 0. 1 和任何數(shù)相乘都的任何數(shù)。- 一個因數(shù)一個因數(shù)=積一個因數(shù)=積期一個因數(shù)4 、整數(shù)除法:已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。- -在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)

18、叫做除數(shù),所求的因數(shù)叫做商。- -乘法和除法互為逆運算。- -在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以 0 ,均得不到一個確定的商。- -被除數(shù) 嘛數(shù)=商 除數(shù)=被除數(shù) 麗 被除數(shù)=商 溜數(shù)(二)小數(shù)四則運算- 1. 小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。- 2. 小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.- 3. 小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是多少。- 4.

19、小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。- 5.乘方求幾個相同因數(shù)的積的運算叫做乘方。例如 3符=32-(三)分數(shù)四則運算- 1. 分數(shù)加法: 分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。- 2. 分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。- 3.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。- 4.乘積是1的兩個數(shù)叫做互為倒數(shù)。- 5.分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求

20、另一個因數(shù)的運算。第二節(jié)、 四則混合運算的順序1. 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。2. 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。3. 沒有括號的混合運算: 同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。4. 有括號的混合運算: 先算小括號里面的,再算中括號里面的,最后算括號外面的。5. 第一級運算:加法和減法叫做第一級運算。6. 第二級運算:乘法和除法叫做第二級運算。第三節(jié)、 運算法則1. 整數(shù)加法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。2. 整數(shù)減法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一

21、 作十,和本位上的數(shù)合并在一起,再減。3. 整數(shù)乘法計算法則:先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù) 哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。4. 整數(shù)除法計算法則:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠 除, 就多看一位, 除到被除數(shù)的哪一位, 商就寫在哪一位的上面。 如果哪一位上不夠商1 , 要補“ 0”占位。每次除得的余數(shù)要小于除數(shù)。5. 小數(shù)乘法法則:先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“ 0”補足。6. 除數(shù)是整數(shù)的小數(shù)除法計

22、算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“ 0”,再繼續(xù)除。7. 除數(shù)是小數(shù)的除法計算法則:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“ 0”) ,然后按照除數(shù)是整數(shù)的除法法則進行計算。8. 同分母分數(shù)加減法計算方法: 同分母分數(shù)相加減,只把分子相加減,分母不變。9. 異分母分數(shù)加減法計算方法: 先通分,然后按照同分母分數(shù)加減法的的法則進行計算。10. 帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。11. 分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的

23、積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。12. 分數(shù)除法的計算法則:甲數(shù)除以乙數(shù)(0 除外) ,等于甲數(shù)乘乙數(shù)的倒數(shù)。第四節(jié)、 運算定律和性質(zhì)1. 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即 a+b=b+a 。2. 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即( a+b)+c=a+(b+c) 。3. 乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a=bxa。4. 乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變

24、,即 (a刈C)。5. 乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b) c=a xc+b xc。6. 減法的性質(zhì):從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c) 。第五節(jié)、 探索運算規(guī)律一般,探索運算規(guī)律分成這幾個階段:計算給定的題組或試算簡單的幾道題觀察算式和計算結(jié)果有何特點比較找出不同算式的共同之處,形成規(guī)律的猜測自主舉例進一步驗證規(guī)律周密思考中確認規(guī)律。我們已經(jīng)學(xué)過的運算規(guī)律有:積的變化規(guī)律:一個因數(shù)不變,另一個因數(shù)擴大或縮小幾倍,得到的積就擴大或縮小幾倍。商不變規(guī)律:被除數(shù)和除數(shù)同乘或除以相

25、同的數(shù)( 0 除外) ,商不變。三、 式與方程第一節(jié)、用字母表示數(shù)1 用字母表示數(shù)的意義和作用* 用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出來,同時也可以表示運算的結(jié)果。2 用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式( 1 )常見的數(shù)量關(guān)系- 路程用 s 表示,速度 v 用表示,時間用 t 表示,三者之間的關(guān)系:- s=vt v=s/t - t=s/v- 總價用 a 表示,單價用 b 表示,數(shù)量用c 表示,三者之間的關(guān)系 :- a=bc b=a/c c=a/b( 2 )運算定律和性質(zhì)- 加法交換律: a+b=b+a 加法結(jié)合律:( a+b) +c=a+(b+c)- 乘法交換律:

26、 ab=ba 乘法結(jié)合律:( ab) c=a(bc)- 乘法分配律: ( a+b) c=ac+bc 減法的性質(zhì): a-(b+c) =a-b-c( 3 )用字母表示幾何形體的公式- 長方形的長用 a 表示,寬用 b 表示,周長用 c 表示,面積用 s 表示。- c=2(a+b) s=ab- 正方形的邊長 a 用表示,周長用 c 表示,面積用 s 表示。- c=4a s=a2- 平行四邊形的底a 用表示,高用 h 表示,面積用 s 表示。- s=ah- 三角形的底用a 表示,高用h 表示,面積用s 表示。- s=ah/2- 梯形的上底用a 表示,下底b 用表示,高用h 表示,中位線用m 表示,面積

27、用 s 表示。- s=(a+b)h/2 s=mh- 圓的半徑用 r 表示,直徑用 d 表示,周長用c 表示,面積用 s 表示。- c=Hd=2lIr s=n r2- 扇形的半徑用 r 表示, n 表示圓心角的度數(shù),面積用 s 表示。- s=n n360- 長方體的長用 a 表示,寬用 b 表示,高用 h 表示,表面積用 s 表示,體積用 v 表示。- v=sh- s=2(ab+ah+bh)- v=abh- 正方體的棱長用 a 表示,底面周長 c 用表示,底面積用 s 表示, 體積用 v 表示 .- s=6a2 v=a3- 圓柱的高用 h 表示,底面周長用 c 表示,底面積用 s 表示, 體積用

28、 v 表示 .- s 側(cè)=ch s 表=$ 側(cè)+2s 底 v=sh- 圓錐的高用 h 表示,底面積用 s 表示, 體積用 v 表示 .- v=sh/33 用字母表示數(shù)的寫法- 數(shù)字和字母、字母和字母相乘時,乘號可以記作“ .,或者省略不寫,數(shù)字要寫在字母的前面。 ”- 當 “1與任何字母相乘時,”“1省略不寫。”- 在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。- 用含有字母的式子表示問題的答案時, 除數(shù)一般寫成分母, 如果式子中有加號或者減號, 要先用括號把含 字母的式子括起來,再在括號后面寫上單位的名稱。4 將數(shù)值代入式子求值* 把具體的數(shù)代入式子求值時,要注意書寫格式:

29、先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。* 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。第二節(jié)、簡易方程(一)方程和方程的解1 方程:含有未知數(shù)的等式叫做方程。- 注意方程是等式,又含有未知數(shù),兩者缺一不可。- 方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和已知數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當未知數(shù)為特定的數(shù)值時 ,方程才成立 。2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。第三節(jié)、解方程解方程,求方程的解的過程叫做解方程。第四節(jié)、列方程解應(yīng)用題1 列方程解應(yīng)

30、用題的意義* 用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。2 列方程解答應(yīng)用題的步驟* 弄清題意,確定未知數(shù)并用 x 表示;* 找出題中的數(shù)量之間的相等關(guān)系;* 列方程,解方程;* 檢查或驗算,寫出答案。3 列方程解應(yīng)用題的方法* 綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。* 分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量) 列成有關(guān)的代數(shù)式進而列出方程。 這是從整體到部分的一種思維過程, 其思考方向是從未知到已知。*

31、列方程解應(yīng)用題的范圍小學(xué)范圍內(nèi)常用方程解的應(yīng)用題:a 一般應(yīng)用題;b 和倍、差倍問題;c 幾何形體的周長、面積、體積計算d 分數(shù)、百分數(shù)應(yīng)用題;e 比和比例應(yīng)用題。四、 正比例和反比例第一節(jié)、比的意義和性質(zhì)1、 比的意義- 兩個數(shù)相除又叫做兩個數(shù)的比。- “: ”是比號,讀作 “比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。- 同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。- 比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。- 比的后項不能是零。根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)

32、值。2、比的性質(zhì)- 比的前項和后項同時乘上或者除以相同的數(shù)( 0 除外) ,比值不變,這叫做比的基本性質(zhì)。3、 求比值和化簡比- 求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。- 根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。 它的結(jié)果必須是一個最簡比, 即前、 后項是互質(zhì)的數(shù)。4、比例尺- 圖上距離:實際距離=比例尺- 要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。- 線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應(yīng)的實際距離。5、按比例分配- 在農(nóng)業(yè)生產(chǎn)和日常生活中, 常常需要把一個數(shù)量按照一定的比來進行

33、分配。 這種分配的方法通常叫做按比 例分配。- 方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。第二節(jié)、 比例的意義和性質(zhì)1、 比例的意義- 表示兩個比相等的式子叫做比例。- 組成比例的四個數(shù),叫做比例的項。- 兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。2、比例的性質(zhì)- 在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。3、解比例- 根據(jù)比例的基本性質(zhì), 如果已知比例中的任何三項, 就可以求出這個數(shù)比例中的另外一個未知項。 求比例 中的未知項,叫做解比例。第三節(jié)、 正比例和反比例1、 成正比例的量- 兩種相關(guān)聯(lián)的量, 一種量變化, 另一種量也隨著變化, 如果這

34、兩種量中相對應(yīng)的兩個數(shù)的比值 (也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。- 用字母表示y/x=k( 一定 )2、成反比例的量- 兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。-用子母表小x Xy=k(一定)第二章 空間與圖形第一節(jié)、 圖形的認識和測量知識點歸納整理一 線和角( 1 )線- 直線- 直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。- 射線- 射線只有一個端點;長度無限。- 線段- 線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線

35、段為最短。- 平行線- 在同一平面內(nèi),不相交的兩條直線叫做平行線。- 兩條平行線之間的垂線長度都相等。- 垂線, 相交的點叫做- 兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線垂足。- 從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。- 2 )角- 1 ) - 從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。- 2 )角的分類- 銳角:小于90 的角叫做銳角。- 直角:等于90 的角叫做直角。- 鈍角:大于90而小于180的角叫做鈍角。- 平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角 180 。- 周角:角的

36、一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360。第二節(jié)、 平面圖形的周長和面積知識點歸納整理1 長方形( 1 )特征- 對邊相等, 4 個角都是直角的四邊形。有兩條對稱軸。( 2 )計算公式- c=2(a+b)- s=ab2 正方形( 1 )特征:- 四條邊都相等,四個角都是直角的四邊形。有4 條對稱軸。( 2 )2)計算公式2- C=4a S a3 三角形( 1 )特征- 由三條線段圍成的圖形。內(nèi)角和是180 度。三角形具有穩(wěn)定性。三角形有三條高。( 2 )計算公式- s=ah/2( 3 ) 分類- 按角分- 銳角三角形:三個角都是銳角。- 直角三角形:有一個角是直角。等腰三角形的兩個銳角各為45

37、 度,它有一條對稱軸。- 鈍角三角形:有一個角是鈍角。- 按邊分- 不等邊三角形:三條邊長度不相等。- 等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。- 等邊三角形:三條邊長度都相等;三個內(nèi)角都是60 度;有三條對稱軸。4 平行四邊形( 1 ) 特征- 兩組對邊分別平行的四邊形。- 相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為 180 度。平行四邊形容易變形。- 2 ) 計算公式s=ah5 梯形( 1 )特征- 只有一組對邊平行的四邊形。- 中位線等于上下底和的一半。- 等腰梯形有一條對稱軸。( 2 ) 公式- s=(a+b)h/2=mh6 圓( 1 ) 圓的認識- 平面

38、上的一種曲線圖形。- 圓中心的一點叫做圓心。一般用字母o 表示。- 半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用 r 表示。- 在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。- 通過圓心并且兩端都在圓上的線段叫做直徑。一般用 d 表示。- 同一個圓里有無數(shù)條直徑,所有的直徑都相等。- 同一個圓里,直徑等于兩個半徑的長度,即 d=2r 。- 圓的大小由半徑?jīng)Q定。 - 圓有無數(shù)條對稱軸。- 2 )圓的畫法- 把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑) ;- 把有針尖的一只腳固定在一點(即圓心)上;- 把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就畫出一個圓。( 3 ) 圓的周長- 圍成圓的曲線的長叫

39、做圓的周長。- 把圓的周長和直徑的比值叫做圓周率。用字母表示。- 4 ) 圓的面積- 圓所占平面的大小叫做圓的面積。(5)計算公式- d=2r r=d/2C= d c=2 rS= r27扇形(1)扇形的認識- 一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。- 圓上AB兩點之間的部分叫做弧,讀作弧AB。-頂點在圓心的角叫做圓心角。- 在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關(guān)。- 扇形有一條對稱軸。(2)計算公式2S= n3608環(huán)形(1)特征- 由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。(2)計算公式22S = R r9軸對稱圖形(1)特征- 如果一個圖形沿著一條直線

40、對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條 直線叫做對稱軸。- 正方形有4條對稱軸,長方形有2條對稱軸。- 等腰三角形有2條對稱軸,等邊三角形有 3條對稱軸。- 等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。- 菱形有4條對稱軸,扇形有一條對稱軸。第三節(jié)、立體圖形知識點歸納整理(一)長方體1特征- 六個面都是長方形(有時有兩個相對的面是正方形)- 相對的面面積相等,12條棱相對的4條棱長度相等。- 有8個頂點。- 相交于一個頂點的三條棱的長度分別叫做長、寬、高。- 兩個面相交的邊叫做棱。- 三條棱相交的點叫做頂點。- 把長方體放在桌面上,最多只能看到三個面。- 長方體或者正

41、方體6 個面的總面積,叫做它的表面積。2 計算公式- s=2(ab+ah+bh)- V=sh- V=abh(二)正方體1 特征- 六個面都是正方形- 六個面的面積相等- 12 條棱,棱長都相等- 有 8 個頂點- 正方體可以看作特殊的長方體2 計算公式2-S 表=6aV= a(三)圓柱1 圓柱的認識- 圓柱的上下兩個面叫做底面。- 圓柱有一個曲面叫做側(cè)面。- 圓柱兩個底面之間的距離叫做高。- 進一法:實際中,使用的材料都要比計算的結(jié)果多一些 ,因此,要保留數(shù)的時候,省略的位上的是4 或者比 4 小,都要向前一位進 1 。這種取近似值的方法叫做進一法2 計算公式- s 側(cè) =ch- s表=s側(cè)+

42、s底X2- v=sh/3(四)圓錐1 圓錐的認識- 圓錐的底面是個圓,圓錐的側(cè)面是個曲面。- 從圓錐的頂點到底面圓心的距離是圓錐的高。- 測量圓錐的高: 先把圓錐的底面放平, 用一塊平板水平地放在圓錐的頂點上面, 豎直地量出平板和底面之 間的距離。- 把圓錐的側(cè)面展開得到一個扇形。 2 計算公式- v= sh/3第四節(jié)、 圖形與變換知識點歸納整理1、 軸對稱圖形如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,那么這個圖形就叫做軸對稱圖形,這條折痕所在的直線叫做軸對稱。2、 平移和旋轉(zhuǎn)1、 平移:物體(或圖形)在同一平面內(nèi)沿直線移動,而本身沒有發(fā)生方向上的改變,像這樣的物體 (或圖形)所做

43、的直線運動叫做平移。平移的兩個要素:一是移動的方向;二是移動的距離。2、 旋轉(zhuǎn):物體(或圖形)以一個點或一個軸為中心進行圓周,像這樣的物體(或圖形)所做的運動 叫做旋轉(zhuǎn)。旋轉(zhuǎn)的三個要素:一是圍繞的定點或軸;二是沿定點或軸旋轉(zhuǎn)的方向(逆時針方向或順時針方向);三是旋轉(zhuǎn)角度。平移和旋轉(zhuǎn)式兩種基本的圖形變換,利用圖形的平移和旋轉(zhuǎn),可以設(shè)計出各種圖案。3、 圖形的擴大與縮小把圖形的各邊按一定的比例可以進行擴大圖或縮小圖(放大圖或縮小圖統(tǒng)稱為原圖的相似圖形)。一個圖形的相似圖形與原圖比較,形狀相同,大小不同。畫一個圖形的相似圖形的步驟:先按一定的比例將圖形的各邊擴大或縮小,計算出相似圖形中相應(yīng)的各邊 的

44、長度,再按新邊長畫出原圖形的相似圖形。第五節(jié)、圖形與位置知識點歸納整理1、 確定物體的相對位置1、 根據(jù)行、歹U,用數(shù)對表示物體的位置。豎排叫做列,橫排叫做行,確定第幾列一般是從左往右數(shù),確定第幾行一般是從前往后數(shù)。用數(shù)對表 示物體的位置時,一般先表示第幾列,再表示第幾行,要用括號把列數(shù)與行數(shù)括起來,并在列數(shù)和行數(shù)之 間用逗號把兩個數(shù)隔開。2、 根據(jù)一個物體相對另一個物體的方向和距離可以確定物體的相對位置。2、 辨認方向在地圖或平面圖中,通常用北、南、西、東、東北、西北、東南、西南8個方位詞。3、 使用線路圖1、看懂并會描述線路圖( 1 )根據(jù)方向標示弄清線路圖的方向( 2 )根據(jù)比例尺和測得

45、的圖上距離求出相應(yīng)的實際距離。( 3 )弄清圖中是從哪兒出發(fā)(即起點),按什么方向走,走多遠,到哪兒。2、畫線路圖( 1 )確定方向。( 2 )根據(jù)實際距離及圖紙的大小確定比例尺。( 3 )求出圖上距離。4、以某一地點為起點,根據(jù)方向和圖上距離確定下一個地點的位置,再以下一地點繼續(xù)畫。第三章統(tǒng)計與可能性第一節(jié),統(tǒng)計一 統(tǒng)計表(一)意義* 把統(tǒng)計數(shù)據(jù)填寫在一定格式的表格內(nèi),用來反映情況、說明問題,這樣的表格就叫做統(tǒng)計表。(二)組成部分* 一般分為表格外和表格內(nèi)兩部分。表格外部分包括標的名稱,單位說明和制表日期;表格內(nèi)部包括表頭、橫標目、縱標目和數(shù)據(jù)四個方面。(三)種類* 單式統(tǒng)計表:只含有一個項

46、目的統(tǒng)計表。* 復(fù)式統(tǒng)計表:含有兩個或兩個以上統(tǒng)計項目的統(tǒng)計表。* 百分數(shù)統(tǒng)計表:不僅表明各統(tǒng)計項目的具體數(shù)量,而且表明比較量相當于標準量的百分比的統(tǒng)計表。(四)制作步驟1 搜集數(shù)據(jù)2 整理數(shù)據(jù):- 要根據(jù)制表的目的和統(tǒng)計的內(nèi)容,對數(shù)據(jù)進行分類。3 設(shè)計草表:- 要根據(jù)統(tǒng)計的目的和內(nèi)容設(shè)計分欄格內(nèi)容、分欄格畫法,規(guī)定橫欄、豎欄各需幾格,每格長度。4 正式制表:- 把核對過的數(shù)據(jù)填入表中,并根據(jù)制表要求,用簡單、明確的語言寫上統(tǒng)計表的名稱和制表日期。二 統(tǒng)計圖(一)意義* 用點線面積等來表示相關(guān)的量之間的數(shù)量關(guān)系的圖形叫做統(tǒng)計圖。(二)分類1 條形統(tǒng)計圖- 用一個單位長度表示一定的數(shù)量, 根據(jù)數(shù)

47、量的多少畫成長短不同的直條, 然后把這些直線按照一定的順 序排列起來。- 優(yōu)點:很容易看出各種數(shù)量的多少。- 注意:畫條形統(tǒng)計圖時,直條的寬窄必須相同。- 取一個單位長度表示數(shù)量的多少要根據(jù)具體情況而確定;- 復(fù)式條形統(tǒng)計圖中表示不同項目的直條,要用不同的線條或顏色區(qū)別開,并在制圖日期下面注明圖例。制作條形統(tǒng)計圖的一般步驟 :( 1 )根據(jù)圖紙的大小,畫出兩條互相垂直的射線。( 2 )在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。( 3 )在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。(4)按照數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。2折線統(tǒng)計圖- 用一個單

48、位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然后把各點用線段順次連接起來。- 優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚地表示出數(shù)量增減變化的情況。- 注意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據(jù)年份或月份的間 隔來確定。制作折線統(tǒng)計圖的一般步驟:(1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。(2)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。(3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。(4)按照數(shù)據(jù)的大小描出各點,再用線段順次連接起來,并注明數(shù)量。3扇形統(tǒng)計圖用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分

49、數(shù)。- 優(yōu)點:很清楚地表示出各部分同總數(shù)之間的關(guān)系。- 制扇形統(tǒng)計圖的一般步驟:- (1)先算出各部分數(shù)量占總量的百分之幾。- (2)再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。- (3)取適當?shù)陌霃疆嬕粋€圓,并按照上面算出的圓心角的度數(shù),在圓里畫出各個扇形。(4)在每個扇形中標明所表示的各部分數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把 各個扇形區(qū)別開。第二節(jié),可能性2、 某些事情發(fā)生的可能性有大有小,對事情發(fā)生的可能性大小,可以用“一定”、“經(jīng)?!薄ⅰ芭紶枴?、“不可能”、“可能”等詞語來描述。3、 事情發(fā)生的可能性大小可以用分數(shù)表示。4、 可以根據(jù)事情發(fā)生的可能性大小來設(shè)計來設(shè)計游戲規(guī)則:游戲

50、雙方機會均等時,游戲規(guī)則較公平;當游戲雙方機會不均等時,游戲規(guī)則不公平。但當游戲雙方的機會均等時,游戲的結(jié) 果仍會有輸贏。第四章解決問題小學(xué)數(shù)學(xué)中把含有數(shù)量關(guān)系的實際問題用語言或文字敘述出來,這樣所形成的題目叫做應(yīng)用題。任何一道應(yīng)用題都由兩部分構(gòu)成。第一部分是已知條件(簡稱條件),第二部分是所求問題(簡稱問題)。應(yīng)用題的條件和問題,組成了應(yīng)用題的結(jié)構(gòu)。應(yīng)用題可分為一般應(yīng)用題與典型應(yīng)用題。沒有特定的解答規(guī)律的兩步以上運算的應(yīng)用題,叫做一般應(yīng)用題。題目中有特殊的數(shù)量關(guān)系,可以用特定的步驟和方法來解答的應(yīng)用題,叫做典型應(yīng)用題。這本資料主要研 究以下30類典型應(yīng)用題:1、歸一問題11、行船問題21、方

51、陣問題2、歸總問題12、列車問題22、商品利潤問題3、和差問題13、時鐘問題23、存款利率問題4、和倍問題14、盈虧問題24、溶液濃度問題5、差倍問題15、工程問題25、構(gòu)圖布數(shù)問題6、倍比問題16、正反比例問題26、幻方問題7、相遇問題17、按比例分配27、抽屜原則問題8、追及問題18、百分數(shù)問題28、公約公倍問題9、植樹問題19、牛吃草”問題29、最值問題10、年齡問題20、雞兔同籠問題30、列方程問題高效率學(xué)習(xí)指導(dǎo)幫孩子多考20分1歸一問題【含義】在解題時,先求出一份是多少(即單一量) ,然后以單一量為標準,求出所要求的數(shù)量。這類應(yīng)用題叫做歸一問題?!緮?shù)量關(guān)系】總量書數(shù)=1份數(shù)量 1份數(shù)

52、量新占份數(shù)=所求幾份的數(shù)量另一總量+ (總量用數(shù))=所求份數(shù)【解題思路和方法】先求出單一量,以單一量為標準,求出所要求的數(shù)量。例1買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?解(1)買1支鉛筆多少錢?0.6 5=0.12 (元)(2)買16支鉛筆需要多少錢? 0.12 16=1.92 (元)列成綜合算式0.6 5X16=0.12 16=1.92 (元)答:需要1.92元。例2 3臺拖拉機3天耕地90公頃,照這樣計算,5臺拖拉機6天耕地多少公頃?解(1) 1臺拖拉機1天耕地多少公頃?90+3心=10 (公頃)(2) 5臺拖拉機6天耕地多少公頃?10X5=300 (公頃)列成綜合算式

53、9033X5X6=1030= 300 (公頃)答:5臺拖拉機6天耕地300公頃。例3 5輛汽車4次可以運送100噸鋼材,如果用同樣的 7輛汽車運送105噸鋼材,需要運幾次?解 (1) 1輛汽車1次能運多少噸鋼材?100代F=5(噸)(3) 7輛汽車1次能運多少噸鋼材?5X7 = 35 (噸)(4) 105噸鋼材7輛汽車需要運幾次?105與5 = 3 (次)列成綜合算式 105+ (10054X7) = 3 (次)答:需要運3次。2歸總問題【含義】解題時,常常先找出總數(shù)量”,然后再根據(jù)其它條件算出所求的問題,叫歸總問題。所謂 總數(shù)量”是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產(chǎn)量、

54、幾小時行的總路程等。【數(shù)量關(guān)系】1份數(shù)量X分數(shù)=總量總量白份數(shù)量=份數(shù)總量 當一份數(shù)=另一每份數(shù)量【解題思路和方法】先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。例1 服裝廠原來做一套衣服用布 3.2米,改進裁剪方法后,每套衣服用布2.8米。原來做791套衣服的布, 現(xiàn)在可以做多少套?解 (1)這批布總共有多少米?3.2 791 =2531.2 (米)(2)現(xiàn)在可以做多少套?2531.2 2.8=904 (套)列成綜合算式 3.2 791登.8= 904 (套)答:現(xiàn)在可以做904套。例2 小華每天讀24頁書,12天讀完了紅巖一書。小明每天讀 36頁書,幾天可以讀完紅巖?解 (1)紅巖這本書總共多少頁?24X12= 288 (頁)(2)小明幾天可以讀完紅巖?28836 = 8 (天)列成綜合算式24X1236 =

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論