版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、坐標變換與參數(shù)方程江蘇省職業(yè)學(xué)校江蘇省職業(yè)學(xué)校數(shù)學(xué)數(shù)學(xué)主編:馬復(fù)主編:馬復(fù) 王巧林王巧林教材培訓(xùn)教材培訓(xùn)坐標變換與參數(shù)方程第第16章章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程 鄧旭萍鄧旭萍第第17章章 復(fù)數(shù)及其應(yīng)用復(fù)數(shù)及其應(yīng)用坐標變換與參數(shù)方程第第16章章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程 本章通過介紹平面直角坐標系坐標本章通過介紹平面直角坐標系坐標軸的平移和旋轉(zhuǎn)、參數(shù)方程及其應(yīng)用,軸的平移和旋轉(zhuǎn)、參數(shù)方程及其應(yīng)用,為以下幾類問題找到了一個較為滿意的為以下幾類問題找到了一個較為滿意的解決方法。解決方法。 坐標變換與參數(shù)方程第16章 坐標變換與參數(shù)方程 在數(shù)控機床上加工工件時,會用到在數(shù)控機床
2、上加工工件時,會用到“工件坐工件坐標系標系”和和“機床坐標系機床坐標系”,同一個工件的坐,同一個工件的坐標怎樣在這兩個不同坐標系中實行轉(zhuǎn)換呢?標怎樣在這兩個不同坐標系中實行轉(zhuǎn)換呢? 在前面的學(xué)習(xí)中我們看到,有些曲線的方在前面的學(xué)習(xí)中我們看到,有些曲線的方程式較為復(fù)雜,能否讓這些方程的形式變程式較為復(fù)雜,能否讓這些方程的形式變得簡單些呢?得簡單些呢? 坐標變換與參數(shù)方程第16章 坐標變換與參數(shù)方程 有些曲線的方程是無法直接用平面有些曲線的方程是無法直接用平面直角坐標系的變量來表示的,能不直角坐標系的變量來表示的,能不能將這些曲線用另一種形式的方程能將這些曲線用另一種形式的方程表示出來呢?表示出來
3、呢? 坐標變換與參數(shù)方程理解平面直角坐標系坐標軸平移和旋轉(zhuǎn)理解平面直角坐標系坐標軸平移和旋轉(zhuǎn)的概念,會用坐標變換公式進行新原坐的概念,會用坐標變換公式進行新原坐標間的轉(zhuǎn)換,會利用坐標軸平移化簡曲標間的轉(zhuǎn)換,會利用坐標軸平移化簡曲線方程。線方程。 一、本章教學(xué)目標一、本章教學(xué)目標 :了解參數(shù)方程的概念,會在給定參數(shù)的了解參數(shù)方程的概念,會在給定參數(shù)的條件下求簡單的參數(shù)方程,能把曲線的條件下求簡單的參數(shù)方程,能把曲線的參數(shù)方程化為普通方程。參數(shù)方程化為普通方程。 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程認識一些常用曲線的參數(shù)方程。認識一些常用曲線的參數(shù)方程。 一、本章教學(xué)目標一、本章教學(xué)目標
4、 :了解平面直角坐標系坐標軸平移在數(shù)控了解平面直角坐標系坐標軸平移在數(shù)控機床上加工工件中的應(yīng)用。機床上加工工件中的應(yīng)用。 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程第16章 坐標變換與參數(shù)方程 人在不同的位置觀察同一個事物得到的印象往人在不同的位置觀察同一個事物得到的印象往往是不一樣的,同一個點的坐標和同一條曲線的方往是不一樣的,同一個點的坐標和同一條曲線的方程,雖然位置、形狀和大小沒有改變,但是如果置程,雖然位置、形狀和大小沒有改變,但是如果置于不同的坐標系,這些坐標和方程也會隨之改變。于不同的坐標系,這些坐標和方程也會隨之改變。為了理清由一個坐標系到另一個坐標系的變換所帶為了理清由一個
5、坐標系到另一個坐標系的變換所帶來的點的坐標和曲線方程的變化,本章引入了坐標來的點的坐標和曲線方程的變化,本章引入了坐標變換的概念。坐標變換是化簡曲線方程,以便討論變換的概念。坐標變換是化簡曲線方程,以便討論曲線的性質(zhì)和畫出曲線的一種重要方法。曲線的性質(zhì)和畫出曲線的一種重要方法。二、本章設(shè)計思路二、本章設(shè)計思路坐標變換與參數(shù)方程坐標軸平移坐標軸平移坐標軸的旋轉(zhuǎn)坐標軸的旋轉(zhuǎn)參數(shù)方程并附有常見幾何曲線表參數(shù)方程并附有常見幾何曲線表第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程 “坐標軸平移坐標軸平移”的基本思路:從討論同一個點在的基本思路:從討論同一個點在兩個不同坐標系中坐標之間的關(guān)系出發(fā),引入坐兩
6、個不同坐標系中坐標之間的關(guān)系出發(fā),引入坐標平移的概念,導(dǎo)出兩組坐標變換公式,并用來標平移的概念,導(dǎo)出兩組坐標變換公式,并用來化簡曲線的方程。為加深學(xué)生對坐標軸平移概念化簡曲線的方程。為加深學(xué)生對坐標軸平移概念的理解,也為有關(guān)專業(yè)學(xué)習(xí)專業(yè)課程作鋪墊,例的理解,也為有關(guān)專業(yè)學(xué)習(xí)專業(yè)課程作鋪墊,例4和例和例5中舉了數(shù)控機床上加工工件的實例。中舉了數(shù)控機床上加工工件的實例。 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程 “坐標軸旋轉(zhuǎn)坐標軸旋轉(zhuǎn)”的基本思路:本節(jié)應(yīng)用三角函數(shù)的基本思路:本節(jié)應(yīng)用三角函數(shù)中兩角和的正弦與余弦的公式推導(dǎo)了坐標軸旋轉(zhuǎn)中兩角和的正弦與余弦的公式推導(dǎo)了坐標軸旋轉(zhuǎn)的坐標變換公式,只
7、介紹了用新坐標表示原坐標的坐標變換公式,只介紹了用新坐標表示原坐標的公式。例的公式。例2的旋轉(zhuǎn)角不是特殊角,是為了讓學(xué)生的旋轉(zhuǎn)角不是特殊角,是為了讓學(xué)生使用計算器學(xué)習(xí)用近似計算解題的方法。使用計算器學(xué)習(xí)用近似計算解題的方法。 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程 “參數(shù)方程參數(shù)方程”的基本思路:本節(jié)從最簡的基本思路:本節(jié)從最簡單的參數(shù)方程單的參數(shù)方程直線的參數(shù)方程著手,引直線的參數(shù)方程著手,引入用消參數(shù)的方法將曲線的參數(shù)方程化為普入用消參數(shù)的方法將曲線的參數(shù)方程化為普通方程的方法。通方程的方法。 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程16.1坐標軸平移坐標軸平移 4課時課時
8、三、課時安排建議三、課時安排建議16.2坐標軸的旋轉(zhuǎn)坐標軸的旋轉(zhuǎn) 2課時課時 第16章 坐標變換與參數(shù)方程16.3 參數(shù)方程參數(shù)方程 3課時課時 復(fù)習(xí)復(fù)習(xí) 2課時課時 坐標變換與參數(shù)方程四、教學(xué)建議四、教學(xué)建議第16章 坐標變換與參數(shù)方程變變 換換坐標變換與參數(shù)方程四、教學(xué)建議四、教學(xué)建議第16章 坐標變換與參數(shù)方程本章自始至終貫穿著變換的思想,變換本章自始至終貫穿著變換的思想,變換是重要的數(shù)學(xué)思想方法;在推導(dǎo)坐標變是重要的數(shù)學(xué)思想方法;在推導(dǎo)坐標變換公式時,教材采用從特殊到一般,通換公式時,教材采用從特殊到一般,通過推導(dǎo)、歸納,最后得出結(jié)論的方法,過推導(dǎo)、歸納,最后得出結(jié)論的方法,教學(xué)時要注
9、意結(jié)合各部分內(nèi)容,讓學(xué)生教學(xué)時要注意結(jié)合各部分內(nèi)容,讓學(xué)生切實掌握和理解這種方法。切實掌握和理解這種方法。 坐標變換與參數(shù)方程四、教學(xué)建議四、教學(xué)建議第16章 坐標變換與參數(shù)方程坐標軸平移與坐標軸旋轉(zhuǎn)是兩種坐標變坐標軸平移與坐標軸旋轉(zhuǎn)是兩種坐標變換的方法,二者有共同點也有不同點,換的方法,二者有共同點也有不同點,教學(xué)時應(yīng)注意進行比較。教學(xué)時應(yīng)注意進行比較。 坐標旋轉(zhuǎn)一節(jié)是選學(xué)內(nèi)容,可根據(jù)學(xué)生坐標旋轉(zhuǎn)一節(jié)是選學(xué)內(nèi)容,可根據(jù)學(xué)生的情況、教學(xué)進度和專業(yè)要求決定取舍。的情況、教學(xué)進度和專業(yè)要求決定取舍。 坐標變換與參數(shù)方程四、教學(xué)建議四、教學(xué)建議第16章 坐標變換與參數(shù)方程教材對求曲線的參數(shù)方程沒有做
10、過多的教材對求曲線的參數(shù)方程沒有做過多的敘述,也未提更高的要求;教學(xué)中不應(yīng)敘述,也未提更高的要求;教學(xué)中不應(yīng)加大難度和添加過多的內(nèi)容,不應(yīng)過分加大難度和添加過多的內(nèi)容,不應(yīng)過分強調(diào)理性而忽視實踐的教學(xué)。強調(diào)理性而忽視實踐的教學(xué)。 坐標變換與參數(shù)方程本章的重點是:本章的重點是: 1坐標軸平移,點的新坐標系坐標和原坐坐標軸平移,點的新坐標系坐標和原坐 標系坐標的計算標系坐標的計算 2利用坐標軸平移化簡曲線方程利用坐標軸平移化簡曲線方程 3把曲線的參數(shù)方程化為普通方程把曲線的參數(shù)方程化為普通方程 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程坐標軸平移和旋轉(zhuǎn)的公式的運用坐標軸平移和旋轉(zhuǎn)的公式的運用
11、難點難點 參數(shù)方程化為普通方程參數(shù)方程化為普通方程 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程五、各節(jié)內(nèi)容要點、教學(xué)目標五、各節(jié)內(nèi)容要點、教學(xué)目標 及環(huán)節(jié)設(shè)計及環(huán)節(jié)設(shè)計 第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程161坐標軸平移坐標軸平移第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程內(nèi)容要點內(nèi)容要點16.1 坐標軸平移本節(jié)主要介紹平面直角坐標系坐標軸平本節(jié)主要介紹平面直角坐標系坐標軸平移的概念;介紹在坐標軸平移中,點的移的概念;介紹在坐標軸平移中,點的坐標變化及坐標變換公式,并用坐標平坐標變化及坐標變換公式,并用坐標平移的變換公式簡化曲線方程移的變換公式簡化曲線方程 。坐標變換與參數(shù)方
12、程教學(xué)目標教學(xué)目標16.1 坐標軸平移1掌握坐標軸平移坐標變換公掌握坐標軸平移坐標變換公式,會求點的新系坐標或原坐標式,會求點的新系坐標或原坐標系坐標,會用坐標軸平移公式化系坐標,會用坐標軸平移公式化簡曲線方程簡曲線方程 。坐標變換與參數(shù)方程教學(xué)目標教學(xué)目標16.1 坐標軸平移2平移公式的兩種形式運用時易產(chǎn)平移公式的兩種形式運用時易產(chǎn)生混淆,教學(xué)中應(yīng)通過實例讓學(xué)生生混淆,教學(xué)中應(yīng)通過實例讓學(xué)生自己領(lǐng)會并及時加以小結(jié),掌握其自己領(lǐng)會并及時加以小結(jié),掌握其規(guī)律,加強公式的記憶并培養(yǎng)靈活規(guī)律,加強公式的記憶并培養(yǎng)靈活運用知識的能力。運用知識的能力。坐標變換與參數(shù)方程重點:重點: 16.1 坐標軸平移
13、 坐標平移的概念及其坐標變換公式坐標平移的概念及其坐標變換公式 利用坐標平移化簡曲線方程利用坐標平移化簡曲線方程 坐標平移在數(shù)控機床加工工件中的實坐標平移在數(shù)控機床加工工件中的實際應(yīng)用際應(yīng)用 坐標變換與參數(shù)方程難點:難點: 16.1 坐標軸平移 坐標變換公式的應(yīng)用坐標變換公式的應(yīng)用 數(shù)控機床加工工件中實際問題的數(shù)數(shù)控機床加工工件中實際問題的數(shù)學(xué)化學(xué)化 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.1 坐標軸平移6 9 坐標變換與參數(shù)方程16.1 坐標軸平移探究探究 (1)如圖)如圖2-1,以,以O(shè)為原點,為原點,A點的坐標是什么?以點的坐標是什么?以 為原點,為原點,A點點的坐標是什么?的坐標是什么
14、? OA0123x圖2-1OO坐標變換與參數(shù)方程16.1 坐標軸平移探究探究 (2)如圖)如圖2-2,在,在xoy坐標系中,坐標系中,B點的坐標是什么?點的坐標是什么?在在 坐標系中,坐標系中,B點的坐標是什么?點的坐標是什么?x o y OB-11 2yx圖2-212O xy坐標變換與參數(shù)方程16.1 坐標軸平移定義定義 一般地,只改變坐標原點一般地,只改變坐標原點的位置,而不改變坐標軸的的位置,而不改變坐標軸的方向與單位長度的坐標系的方向與單位長度的坐標系的變換,叫做變換,叫做坐標軸的平移坐標軸的平移。 坐標變換與參數(shù)方程例例1 如圖如圖2-3,坐標系是原坐標系,坐標系是原坐標系xoy平移
15、后得到的一個新坐標系,在平移后得到的一個新坐標系,在xoy坐標系中的坐標是坐標系中的坐標是(-2,-1),),分別分別寫出點寫出點A、B、C、D在各坐標系中的在各坐標系中的坐標。坐標。OB-112yx圖2-312-2-3-1ACDO xy坐標變換與參數(shù)方程解解 (1)(1)將圖將圖2-32-3中的中的 與與 軸擦除軸擦除 :o x o y OB-112yx圖2-312-2-3-1ACDO xy坐標變換與參數(shù)方程由此得:OB-112yx12-2-3-1ACD點ABCD坐標系xoy中的坐標 (1,0) (-2,1) (0,-1)(-1,-1)坐標變換與參數(shù)方程解解 (2)(2)將圖將圖2-32-3
16、中的中的 與與 軸擦除軸擦除 :OB-112yx圖2-312-2-3-1ACDO xyoxoy坐標變換與參數(shù)方程得:B1212-1ACD3xyO 由此得:點A、B、C、D在坐標系 中的坐標: x o y 坐標系x o y 點ABCD 中的坐標(3,1)(0,2) (2,0) (1,0)坐標變換與參數(shù)方程16.1 坐標軸平移練習(xí)練習(xí)如圖,坐標系如圖,坐標系 是原坐標系是原坐標系xoy平移后平移后得到的一個新坐標系,得到的一個新坐標系, 在在xoy坐標系中的坐標坐標系中的坐標是(是(3,1),分別寫出),分別寫出點點A、B、C、D在各坐在各坐標系中的坐標。標系中的坐標。 x o y O xyOOB
17、-112yx12-23-1ACD坐標變換與參數(shù)方程16.1 坐標軸平移結(jié)論結(jié)論一般地,若坐標系一般地,若坐標系xoy平移至新平移至新坐標系坐標系 , 在原坐標系在原坐標系xoy中的中的坐標是(坐標是( ,),則易得坐標軸平移,),則易得坐標軸平移的坐標變換公式:的坐標變換公式: 0 x0yx o y O00yyyxxx或 00yyyxxx坐標變換與參數(shù)方程16.1 坐標軸平移 例例2 已知坐標平移,原點移已知坐標平移,原點移至至 ,利用坐標平移的坐標變,利用坐標平移的坐標變換公式,求下列各點在新坐標系中換公式,求下列各點在新坐標系中的坐標:的坐標:A(0,8); B(1,2); C(6,0);
18、 D(-1,-2); E(-5,7). )2 , 1 (o坐標變換與參數(shù)方程16.1 坐標軸平移問題解決問題解決 已知點已知點A在在xoy坐標系中坐標系中的坐標是的坐標是(-3,1),在新坐標系,在新坐標系 中的坐標是中的坐標是(4,2),問原點,問原點o移到移到什么位置上去了什么位置上去了(即即 在原坐標在原坐標系系xoy中的坐標是(中的坐標是( ,)是什,)是什么么)? x o y O0 x0y坐標變換與參數(shù)方程16.1 坐標軸平移練習(xí)練習(xí) 例例3 問題解決問題解決 練習(xí)練習(xí) 化簡曲線化簡曲線方程方程坐標變換與參數(shù)方程16.1 坐標軸平移建議建議:讓學(xué)生看一段數(shù)控機床讓學(xué)生看一段數(shù)控機床加
19、工工件的視頻,使學(xué)生對加工工件的視頻,使學(xué)生對數(shù)控機床有一個直觀的感知數(shù)控機床有一個直觀的感知與較形象的理解。與較形象的理解。 坐標變換與參數(shù)方程16.1 坐標軸平移例例4 例例5 練習(xí)練習(xí) 坐標變換與參數(shù)方程16.1 坐標軸平移坐標變換與參數(shù)方程162 坐標軸旋轉(zhuǎn)坐標軸旋轉(zhuǎn)第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程內(nèi)容要點內(nèi)容要點16.2 坐標軸旋轉(zhuǎn)本節(jié)主要介紹平面直角坐標系坐標本節(jié)主要介紹平面直角坐標系坐標軸旋轉(zhuǎn)的概念;介紹在坐標軸旋轉(zhuǎn)軸旋轉(zhuǎn)的概念;介紹在坐標軸旋轉(zhuǎn)中,點的坐標變化及坐標變換公式中,點的坐標變化及坐標變換公式(用原坐標表示新坐標)。(用原坐標表示新坐標)。 坐標變換與參
20、數(shù)方程教學(xué)目標、重點與難點教學(xué)目標、重點與難點16.2 坐標軸旋轉(zhuǎn)1知道坐標軸旋轉(zhuǎn)的坐標變換公知道坐標軸旋轉(zhuǎn)的坐標變換公式,會求點的新系坐標式,會求點的新系坐標 2本節(jié)的教學(xué)重點是坐標軸旋轉(zhuǎn)的本節(jié)的教學(xué)重點是坐標軸旋轉(zhuǎn)的公式,教學(xué)難點是坐標軸旋轉(zhuǎn)中點公式,教學(xué)難點是坐標軸旋轉(zhuǎn)中點的新系坐標的新系坐標 坐標變換與參數(shù)方程教學(xué)目標、重點與難點教學(xué)目標、重點與難點16.2 坐標軸旋轉(zhuǎn)3本節(jié)只介紹了坐標軸旋轉(zhuǎn)的本節(jié)只介紹了坐標軸旋轉(zhuǎn)的坐標變換公式:坐標變換公式: sincoscossinxyxyyx 適用于求點在新坐標系中的坐標適用于求點在新坐標系中的坐標 坐標變換與參數(shù)方程教學(xué)目標、重點與難點教學(xué)目
21、標、重點與難點16.2 坐標軸旋轉(zhuǎn)至于另一組坐標變換公式:至于另一組坐標變換公式: cossinsincosyxyyxx只在學(xué)習(xí)指導(dǎo)書中作了介紹只在學(xué)習(xí)指導(dǎo)書中作了介紹 。坐標變換與參數(shù)方程教學(xué)目標、重點與難點教學(xué)目標、重點與難點16.2 坐標軸旋轉(zhuǎn)4例題例題2中用到了近似計算,中中用到了近似計算,中職數(shù)學(xué)教學(xué)的一項重要的任務(wù)是職數(shù)學(xué)教學(xué)的一項重要的任務(wù)是培養(yǎng)學(xué)生近似計算的能力,這樣培養(yǎng)學(xué)生近似計算的能力,這樣的例題要讓學(xué)生利用計算器來完的例題要讓學(xué)生利用計算器來完成。成。 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計( (流程圖流程圖) )16.2 坐標軸旋轉(zhuǎn)觀看圖形旋轉(zhuǎn)的圖片,觀看圖形旋轉(zhuǎn)的圖片,理
22、解旋轉(zhuǎn)的概念。理解旋轉(zhuǎn)的概念。學(xué)生例舉生活中圖形學(xué)生例舉生活中圖形旋轉(zhuǎn)的例子旋轉(zhuǎn)的例子坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計( (流程圖流程圖) )16.2 坐標軸旋轉(zhuǎn)“探究探究”:坐標旋轉(zhuǎn)特殊角。:坐標旋轉(zhuǎn)特殊角。(利用幾何圖形求解利用幾何圖形求解) 坐標旋轉(zhuǎn)角度為任意角坐標旋轉(zhuǎn)角度為任意角推導(dǎo)坐標旋轉(zhuǎn)的變換公式:推導(dǎo)坐標旋轉(zhuǎn)的變換公式: 由學(xué)生動由學(xué)生動手完成手完成sincoscossinxyxyyx 采用互動方采用互動方式,加深記式,加深記憶憶驗驗證證坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計( (流程圖流程圖) )16.2 坐標軸旋轉(zhuǎn)舉例:例舉例:例1,例,例2。練習(xí):練習(xí):1,2 舉例:例舉例:
23、例3。練習(xí):練習(xí):3 例例2、練習(xí)、練習(xí)2是利是利用計算器求解近用計算器求解近似值的,教師可似值的,教師可參見第一冊教材,參見第一冊教材,給學(xué)生列出計算給學(xué)生列出計算器操作的步驟表。器操作的步驟表。 參見第一節(jié)參見第一節(jié)數(shù)控機床加數(shù)控機床加工工件知識工工件知識坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計( (流程圖流程圖) )16.2 坐標軸旋轉(zhuǎn)1“問題解決問題解決” 2坐標旋轉(zhuǎn)中,已知點在坐標旋轉(zhuǎn)中,已知點在新坐標系中的坐標,求新坐標系中的坐標,求點在原坐標系中的坐標點在原坐標系中的坐標cossinsincosyxyyxx3小結(jié)、布置作業(yè)小結(jié)、布置作業(yè) 提高部分,提高部分,在學(xué)生能力在學(xué)生能力允許的情
24、況允許的情況下,可由學(xué)下,可由學(xué)生自己推導(dǎo)生自己推導(dǎo)出來出來坐標變換與參數(shù)方程16.3 參數(shù)方程參數(shù)方程第16章 坐標變換與參數(shù)方程坐標變換與參數(shù)方程內(nèi)容要點內(nèi)容要點16.3 參數(shù)方程本節(jié)介紹了參數(shù)方程的概念,簡單本節(jié)介紹了參數(shù)方程的概念,簡單的曲線參數(shù)方程的求法,直線的參的曲線參數(shù)方程的求法,直線的參數(shù)方程和圓心在原點在圓的參數(shù)方數(shù)方程和圓心在原點在圓的參數(shù)方程及參數(shù)方程化為普通方程的方法。程及參數(shù)方程化為普通方程的方法。 坐標變換與參數(shù)方程教學(xué)目標、重點、難點教學(xué)目標、重點、難點16.3 參數(shù)方程1本節(jié)的教學(xué)重點是參數(shù)方程本節(jié)的教學(xué)重點是參數(shù)方程的概念、在給定參數(shù)的條件下會的概念、在給定參
25、數(shù)的條件下會求簡單的參數(shù)方程和把曲線的參求簡單的參數(shù)方程和把曲線的參數(shù)方程化為普通方程數(shù)方程化為普通方程 。坐標變換與參數(shù)方程教學(xué)目標、重點、難點教學(xué)目標、重點、難點16.3 參數(shù)方程2本節(jié)教學(xué)難點求曲線的參數(shù)方本節(jié)教學(xué)難點求曲線的參數(shù)方程程 。3以直線方程為例,讓學(xué)生了解同以直線方程為例,讓學(xué)生了解同一條曲線由于參數(shù)的不同,方程可一條曲線由于參數(shù)的不同,方程可能會不同能會不同 。坐標變換與參數(shù)方程教學(xué)目標、重點、難點教學(xué)目標、重點、難點16.3 參數(shù)方程4知道直線的參數(shù)方程和圓心在坐知道直線的參數(shù)方程和圓心在坐標原點,半徑為標原點,半徑為R的圓的參數(shù)方程的圓的參數(shù)方程 。坐標變換與參數(shù)方程教
26、學(xué)目標、重點、難點教學(xué)目標、重點、難點16.3 參數(shù)方程5不是所有曲線的參數(shù)方程都能化為普通方程的,不是所有曲線的參數(shù)方程都能化為普通方程的,我們只能將一些簡單的參數(shù)方程化為普通方程;將我們只能將一些簡單的參數(shù)方程化為普通方程;將參數(shù)方程化為普通方程時要消去參變量,常用的方參數(shù)方程化為普通方程時要消去參變量,常用的方法是代入消元法和加減消元法。加減消元法中經(jīng)常法是代入消元法和加減消元法。加減消元法中經(jīng)常使用一些三角恒等式;將曲線的參數(shù)方程化成普通使用一些三角恒等式;將曲線的參數(shù)方程化成普通方程的時候,對變量的取值范圍不作討論方程的時候,對變量的取值范圍不作討論 。坐標變換與參數(shù)方程教學(xué)目標、重
27、點、難點教學(xué)目標、重點、難點16.3 參數(shù)方程6教學(xué)中要應(yīng)用教學(xué)課件或教具,教學(xué)中要應(yīng)用教學(xué)課件或教具,使學(xué)生了解曲線的由來并對一些曲使學(xué)生了解曲線的由來并對一些曲線有直觀的認識線有直觀的認識 。坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程 通過生活實例引入,讓通過生活實例引入,讓學(xué)生知曉建立參數(shù)方程的必學(xué)生知曉建立參數(shù)方程的必要性。要性。 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程實例實例 (可根據(jù)學(xué)生生活的環(huán)境,選擇他可根據(jù)學(xué)生生活的環(huán)境,選擇他們熟悉的例子們熟悉的例子)一自行車車輪的輪邊上按裝一自行車車輪的輪邊上按裝了一個小彩燈,當夜晚自行車沿著直線行了一個小彩燈,當夜
28、晚自行車沿著直線行走走( (車輪是滾動,不是滑動車輪是滾動,不是滑動) )時,我們看到時,我們看到的小彩燈的的小彩燈的軌跡軌跡方程是什么?方程是什么?( (假設(shè)自行車假設(shè)自行車車輪的半徑是車輪的半徑是a.).) 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程解解建立如圖所示的坐標系建立如圖所示的坐標系:OyxaNMPtxy坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程分析分析 假設(shè)車輪滾動后小彩燈從假設(shè)車輪滾動后小彩燈從O點到點到了了M(x,y)點,此時半徑與豎直線點,此時半徑與豎直線NP的夾的夾角為角為t. 則可以得到:則可以得到:(請學(xué)生完成請學(xué)生完成) 線段線段ON的長等于弧
29、段的長等于弧段MN的長,等于的長,等于at. 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程M點的坐標:點的坐標: 這就是小彩燈的軌跡方程。這就是小彩燈的軌跡方程。 )cos1 ()sin(tayttax坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程 從具體到抽象,從從具體到抽象,從“探究探究”引出引出參數(shù)方程的概念。表明參數(shù)方程是表參數(shù)方程的概念。表明參數(shù)方程是表示曲線的一種重要形式。選擇適當?shù)氖厩€的一種重要形式。選擇適當?shù)膮?shù)是本節(jié)學(xué)習(xí)的一個重點。參數(shù)是本節(jié)學(xué)習(xí)的一個重點。 坐標變換與參數(shù)方程環(huán)節(jié)設(shè)計環(huán)節(jié)設(shè)計16.3 參數(shù)方程探究探究如圖如圖2-10,直線的方程是,直線的方程是 ,為直線上任意一點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版本二手房買賣合同針對房產(chǎn)稅繳納的約定3篇
- 2025年個人水利工程建設(shè)與維護承包合同模板4篇
- 2025年度生態(tài)環(huán)保幕墻材料采購與安裝勞務(wù)分包合同范例4篇
- 二零二五版汽車4S店促銷員銷售服務(wù)合同3篇
- 2025年度新材料研發(fā)與應(yīng)用推廣咨詢服務(wù)合同4篇
- 二手住宅買賣合同(海南版2024)
- 專利技術(shù)成果實施許可合同(2024版)版B版
- 2025年度智慧城市運營管理出資合同4篇
- 二零二五年度危險品運輸合同框架協(xié)議2篇
- 二零二五年度寵物活體活體領(lǐng)養(yǎng)援助合同4篇
- 節(jié)前停工停產(chǎn)與節(jié)后復(fù)工復(fù)產(chǎn)安全注意事項課件
- 設(shè)備管理績效考核細則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調(diào)電子計費信息系統(tǒng)工程技術(shù)規(guī)范
- 廣州綠色金融發(fā)展現(xiàn)狀及對策的研究
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負性情緒與心理護理
- 高考語文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
- 協(xié)會監(jiān)事會工作報告大全(12篇)
- WS-T 813-2023 手術(shù)部位標識標準
評論
0/150
提交評論