版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、數學九年級上冊知識點· 瀏覽:994· |· 更新:2014-01-16 09:30第一單元 二次根式1、二次根式式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數a必須是非負數。2、最簡二次根式若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式?;胃綖樽詈喍胃降姆椒ê筒襟E:(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡。(2)如果被開方數是整數或整式,先將他們分解因數或因式,然后把能開得盡方的因數或因式開
2、出來。3、同類二次根式幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式。4、二次根式的性質(1)(2)(3)(4)5、二次根式混合運算二次根式的混合運算與實數中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。第二單元 一元二次方程一、一元二次方程1、一元二次方程含有一個未知數,并且未知數的最高次數是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式,它的特征是:等式左邊十一個關于未知數x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數;bx叫做一次項,b叫做一次項系數;c叫做常數項。二、一元二次方程的解法1、直接
3、開平方法利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如的一元二次方程。根據平方根的定義可知,是b的平方根,當時,當b<0時,方程沒有實數根。2、配方法配方法是一種重要的數學方法,它不僅在解一元二次方程上有所應用,而且在數學的其他領域也有著廣泛的應用。配方法的理論根據是完全平方公式,把公式中的a看做未知數x,并用x代替,則有。3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法
4、。三、一元二次方程根的判別式根的判別式一元二次方程中,叫做一元二次方程的根的判別式,通常用“”來表示,即四、一元二次方程根與系數的關系如果方程的兩個實數根是,那么,。也就是說,對于任何一個有實數根的一元二次方程,兩根之和等于方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商。第三單元 旋轉一、旋轉 1、定義把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。2、性質(1)對應點到旋轉中心的距離相等。(2)對應點與旋轉中心所連線段的夾角等于旋轉角。二、中心對稱
5、 1、定義把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。2、性質(1)關于中心對稱的兩個圖形是全等形。(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。3、判定如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。4、中心對稱圖形把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中
6、心??键c五、坐標系中對稱點的特征(3分) 1、關于原點對稱的點的特征兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P(-x,-y)2、關于x軸對稱的點的特征兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關于x軸的對稱點為P(x,-y)3、關于y軸對稱的點的特征兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關于y軸的對稱點為P(-x,y)第四單元 圓一、圓的相關概念 1、圓的定義在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端
7、點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。2、圓的幾何表示以點O為圓心的圓記作“O”,讀作“圓O”二、弦、弧等與圓有關的定義(1)弦連接圓上任意兩點的線段叫做弦。(如圖中的AB)(2)直徑經過圓心的弦叫做直徑。(如途中的CD)直徑等于半徑的2倍。(3)半圓圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。(4)弧、優(yōu)弧、劣弧圓上任意兩點間的部分叫做圓弧,簡稱弧?;∮梅枴啊北硎?,以A,B為端點的弧記作“”,讀作“圓弧AB”或“弧AB”。大于半圓的弧叫做優(yōu)?。ǘ嘤萌齻€字母表示);小于半圓的弧叫做劣弧(多用兩個字母表示)三、垂徑定理及其推論垂徑定理:垂直于弦
8、的直徑平分這條弦,并且平分弦所對的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。(2)弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。推論2:圓的兩條平行弦所夾的弧相等。垂徑定理及其推論可概括為:過圓心垂直于弦直徑平分弦知二推三平分弦所對的優(yōu)弧平分弦所對的劣弧四、圓的對稱性1、圓的軸對稱性圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。 2、圓的中心對稱性圓是以圓心為對稱中心的中心對稱圖形。五、弧、弦、弦心距、圓心角之間的關系定理
9、60;1、圓心角頂點在圓心的角叫做圓心角。2、弦心距從圓心到弦的距離叫做弦心距。3、弧、弦、弦心距、圓心角之間的關系定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等。六、圓周角定理及其推論 1、圓周角頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。2、圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半。推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。推論2:半圓(或直徑)所對
10、的圓周角是直角;90°的圓周角所對的弦是直徑。推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。七、點和圓的位置關系設O的半徑是r,點P到圓心O的距離為d,則有:d<r點P在O內;d=r點P在O上;d>r點P在O外。八、過三點的圓 1、過三點的圓不在同一直線上的三個點確定一個圓。2、三角形的外接圓經過三角形的三個頂點的圓叫做三角形的外接圓。3、三角形的外心三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。4、圓內接四邊形性質(四點共圓的判定條件)圓內接四邊形對角互補。九、反證法先假設命題
11、中的結論不成立,然后由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。十、直線與圓的位置關系直線和圓有三種位置關系,具體如下:(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。如果O的半徑為r,圓心O到直線l的距離為d,那么:直線l與O相交d<r;直線l與O相切d=r;直線l與O相離d>r;十一、切線的判定和性質 1、切線的判定定理經過半徑的
12、外端并且垂直于這條半徑的直線是圓的切線。2、切線的性質定理圓的切線垂直于經過切點的半徑。十二、切線長定理 1、切線長在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。2、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。十三、三角形的內切圓 1、三角形的內切圓與三角形的各邊都相切的圓叫做三角形的內切圓。2、三角形的內心三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。十四、圓和圓的位置關系 1、圓和圓的位置
13、關系如果兩個圓沒有公共點,那么就說這兩個圓相離,相離分為外離和內含兩種。如果兩個圓只有一個公共點,那么就說這兩個圓相切,相切分為外切和內切兩種。如果兩個圓有兩個公共點,那么就說這兩個圓相交。2、圓心距兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關系的性質與判定設兩圓的半徑分別為R和r,圓心距為d,那么兩圓外離d>R+r兩圓外切d=R+r兩圓相交R-r<d<R+r(Rr)兩圓內切d=R-r(R>r)兩圓內含d<R-r(R>r)4、兩圓相切、相交的重要性質如果兩圓相切,那么切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分
14、兩圓的公共弦。十五、正多邊形和圓 1、正多邊形的定義各邊相等,各角也相等的多邊形叫做正多邊形。2、正多邊形和圓的關系只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。十六、與正多邊形有關的概念 1、正多邊形的中心正多邊形的外接圓的圓心叫做這個正多邊形的中心。2、正多邊形的半徑正多邊形的外接圓的半徑叫做這個正多邊形的半徑。3、正多邊形的邊心距正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。4、中心角正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。十七、正多邊形的對稱性 1、正多邊形的軸對稱性正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。2、正多邊形的中心對稱性邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。3、正多邊形的畫法先用量角器或尺規(guī)等分圓,再做正多邊形。十八、弧長和扇形面積 1、弧長公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型環(huán)保材料租賃經營合同模板4篇
- 二零二五年度商業(yè)活動場地借用及宣傳合同2篇
- 二零二五年度體育產業(yè)普通合伙企業(yè)合作協議范本4篇
- 2025年度5G產業(yè)投資理財協議
- 2025年三方知識產權轉讓還款協議書范本及內容說明3篇
- 個性化定制2024年版民間資金借貸協議范本版B版
- 2025年酒店住宿賠償協議范本
- 個人股份轉讓協議書
- 2025年標準植樹承包合同模板:森林碳匯項目專用3篇
- 個人汽車出租公司用協議細則(2024版)版B版
- 2024-2030年中國海泡石產業(yè)運行形勢及投資規(guī)模研究報告
- 動物醫(yī)學類專業(yè)生涯發(fā)展展示
- 2024年同等學力申碩英語考試真題
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 非遺文化走進數字展廳+大數據與互聯網系創(chuàng)業(yè)計劃書
- 2024山西省文化旅游投資控股集團有限公司招聘筆試參考題庫附帶答案詳解
- 科普知識進社區(qū)活動總結與反思
- 加油站廉潔培訓課件
- 現金日記賬模板(帶公式)
- 消化內科??票O(jiān)測指標匯總分析
- 混凝土結構工程施工質量驗收規(guī)范
評論
0/150
提交評論