多時(shí)滯Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性分析及吸引域的估計(jì)_第1頁
多時(shí)滯Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性分析及吸引域的估計(jì)_第2頁
多時(shí)滯Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性分析及吸引域的估計(jì)_第3頁
多時(shí)滯Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性分析及吸引域的估計(jì)_第4頁
多時(shí)滯Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性分析及吸引域的估計(jì)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Vol.32,No.1ACTA AUTOMATICA SINICA January,2006Analysis for Robust Stability of Hopeld Neural Networks withMultiple Delays 1ZHANG Hua-Guang JI Ce ZHANG Tie-Yan(Key Laboratory of Process Industry Automation,Ministry of Education,Northeastern University,Shenyang 110004(E-mail:zorks,m ultiple dela ys,pa

2、rameter p erturbations,robust stabilit y ,nequalit yn of Hopeld neural net w orks with symmetric in terconne s and gained abundan t fruits 1,2in classication,parallel in solving some optimization problems 3.Ho w ever,it is im of in terconnecting structure due to the inuences of parame dela y occurs

3、inevitably and ma y bring oscillation durineural net w orks 4.Hence,it is imp ortan t to consider theNo.1ZHANG Hua-Guang et al.:Analysis for Robust Stability of Hopeld Neural Networks (85x i M i (2Considering the inuences of perturbations,then (1can be described asx (t =(C +C x (t +(T 0+T 0S (x (t +

4、Kk =1(T k +T k S (x (t k (3where C =diagc 1,c n n n and T k n n ,k =0,K are time-invariant matrices representing the norm-bounded uncertainties.Assumption 2.We assume that the norm of the perturbations C and T k ,k =0,K are bounded andC T 0T k =HF A B 0B K (4where F is an unknown matrix representing

5、 parametric perturbations which satisesF T F E (5where E is an identical matrix,and A,B 0,B K can be regarded as the known structural matrices of perturbations with appropriate dimensions.Denition.The equilibrium point of system (1is said to be globally robustly stable with respect to the uncertaint

6、ies C and T k ,k =0,K ,if the equilibrium point of system (3is globally asymptotically stable.Distinctly,the origin is an equilibrium point of (1and (3.Thus,in order to study the global robust stability of the zero solution of system (1with respect to parametric uncertainties C and T k ,k =0,K ,it s

7、uces to investigate the globally asymptotic stability of the zero solution ofsystem (3.Now,the interconnecting matrix T =T 0+T 0+Kk =1(T k +T k is nonsymmetric due tothe inuences of uncertainties T k ,k =0,K .Lemma 1.(8Michel,et al.For a functional dierential equation with time delay x(t =f (t,x t ,

8、if there exists a continuous functional V (t,such that there exist non-decreasing continuous functions u,v,w :+,which satisfy u (0=v (0=0,u ( (0 V (t, v (|and V(t, w ( (0 ,then the solution x =0of the functional dierential equation is asymptotically stable.In the above Lemma, denotes the Euclidean v

9、ector norm on n .x t (denotes the restriction of x (to the interval t K ,t translated to K ,0.For s K ,0,we have x t (s =x (t +s ,where t 0.For any C (K ,0,n ,we dene |=max (t :t K ,0.Lemma 29.If U,V and W are real matrices of appropriate dimensions with M satisfying M =M T ,thenM +UV W +W T V T U T

10、 0(6for all V T V E ,if and only if there exists a positive constant such thatM +1UU T +W T W 0(786ACTA AUTOMATICA SINICA Vol.32No.1ZHANG Hua-Guang et al.:Analysis for Robust Stability of Hopeld Neural Networks (8788ACTA AUTOMATICA SINICA Vol.32P HH T P 00000.000+A T A A T B K E MA T B 0E M E M B T

11、K A E M B T K B K EM E M B T K B 0E M .E M B T 0A E M B T 0B K E ME M B T 0B 0E M 0, k = 1, , K, the equilibrium point x = 0 of system (3 is asymptotically stable if K K 2 P0 C + k=0 k + ( M 2 P0 2 k=0 1 ( Tk + Tk 2 2 k (22 M where P0 = diag1/c1 , , 1/cn , M = maxi : 1 i n. Here, denotes the matrix

12、norm T induced by the Euclidean vector norm, i.e., P0 = max (P0 P0 . M The corollary follows from S 0, i = 1, , n, k = 0, , K, such that the following linear matrix inequality (LMI holds K T P P C + C T k +K+ A A 1 P TK E M T K +K E M BK BK E M 0 . . . 0 0 . . . . . . 0 0 . . . . 0 . . . 0 . . . . .

13、 P T0 E M 0 . . . 0 T 0 +0 E M B0 B0 E M 0 . . . . . . 0 PH . . . . . . 0 K+ I 1 0 . . . 0 . . . . . . . . . 0 . . . . . . . . . 0 . . . . 0 0 PH k=0 T E M TK P . . . . . . M T TP E 0 TP H . . . . . . TP H . . . . . . . . . . . . . . . . 0 . . 0 . . . . . 0 0I (23 The proof of the corollary and the

14、simulations are omitted due to space limitation. 4 Conclusion During the implementation process of Hopeld neural networks by electronic circuits, time delays and parameter perturbations are inevitable. This paper studies the robust stability of a class of Hopeld neural network models with multiple d

15、elays and parameter perturbations, and gives the sufcient conditions for the asymptotic stability of equilibrium point x = 0 for arbitrarily bounded delay k , k = 1, , K, which take the form of linear matrix inequality. Since the perturbation norms are bounded in general, we give a useful corollary

16、by means of the denition and properties of matrix norm. In applications, the bound of delays is frequently not very large and is usually known. Therefore, the next research work is to discuss further whether we can obtain the sucient conditions for the robust stability of equilibrium point, which de

17、pend on time delay k , k = 1, , K. References 1 Dan S. On the hysteresis and robustness of Hopfeild neural networks. IEEE Transactions on Cricuits and Systems: Analog and Digital Signal Processing, 1993, 40(11: 745748 2 Liao X X, Chang L, Shen Y. Study on stability of discrete-time Hopeld neural net

18、works. Acta Automatica Sinica, 1999, 25(6: 721727 3 Wang W L, Wu Q D, Xu X L. Hopeld neural network approach for job-shop scheduling problems. Acta Automatica Sinica, 2002, 28(5: 838844 4 Zhang Q, Wei X P, Xu J. Global asymptotic stability of Hopeld neural network with transmission delays. Physics L

19、etters A, 2003, 318: 399405 90 ACTA AUTOMATICA SINICA Vol. 32 5 Si J, Michel A N. Analysis and synthesis of a class of discrete-time neural networks with nonlinear interconnections. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1994, 41(1: 5258 6 Michel A N, Gray

20、D L. Analysis and synthesis of neural networks with lower block triangular interconnecting structure. IEEE Transactions on Circuits and Systems, 1990, 37(10: 12671283 7 Tan Y, He Z Y. A parameter disturbing algorithm for neural networks and its application to manipulator control. Robot, 1997, 19(6:

21、438443 8 Michel A N, Wang K, Hu B. Qualitative Theory of Dynamical SystemsThe Role of Stability Preserving Mappings. Second Edition. New York: Marcel Dekker, 2001 9 Xu S, Lam J, Lin Z and Galkowski K. Positive real control for uncertain two dimensional systems. IEEE Transactions on Circuits and Systems-I, 2002, 49(11: 16591666 10 Boyd S, El Ghaoui L, Feron E. Linear matrix inequalities in system and control theory. Studies in Applied Mathematics. Philadelphia: SIAM, 1994 ZHANG Hua-Guang Received his Ph. D. degree from Southeastern University in 1991. He entered Automatic Control Department,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論