版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)學(xué)公式大全中考復(fù)習(xí)公式總結(jié)人教版初中數(shù)學(xué)公式大全1 過(guò)兩點(diǎn)有且只有一條直線2 兩點(diǎn)之間線段最短3 同角或等角的補(bǔ)角相等4 同角或等角的余角相等5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內(nèi)錯(cuò)角相等,兩直線平行11 同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13 兩直線平行,內(nèi)錯(cuò)角相等14 兩直線平行,同旁內(nèi)角互補(bǔ)15 定理 三角形兩邊的和大于第三邊16 推論 三角形兩邊的差小于第三邊17
2、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于18018 推論1 直角三角形的兩個(gè)銳角互余19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27 定理1 在角的平
3、分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于6034 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)35 推論1 三個(gè)角都相等的三角形是等邊三角形36 推論2 有一個(gè)角等于60的等腰三角形是等邊三角形37 在直
4、角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形43 定理2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱4
5、6勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c247勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形48定理 四邊形的內(nèi)角和等于36049四邊形的外角和等于36050多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)18051推論 任意多邊的外角和等于36052平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等54推論 夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判
6、定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角61矩形性質(zhì)定理2 矩形的對(duì)角線相等62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1 菱形的四條邊都相等65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(ab)267菱形判定定理1 四邊都相等的四邊形是菱形68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形69正方
7、形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直
8、線上截得的線段也相等79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2 S=Lh 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性質(zhì) 如果ab=cd,那么(ab)b=(cd)d85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab86 平行線分線段成比例定理 三條
9、平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93 判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角
10、形相似(SAS)94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合102圓的內(nèi)部可以看作是圓心的
11、距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧平分弦所
12、對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2 圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是直徑119推論3 如果三角形一邊上的中線等于這邊的一半
13、,那么這個(gè)三角形是直角三角形120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121直線L和O相交dr直線L和O相切d=r直線L和O相離dr122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對(duì)邊的和相等128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角129推論 如果兩個(gè)弦切角所夾的弧相
14、等,那么這兩個(gè)弦切角也相等130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135兩圓外離dR+r 兩圓外切d=R+r兩圓相交R-rdR+r(Rr)兩圓內(nèi)切d=R-r(Rr) 兩圓內(nèi)含dR-r(Rr)136定理 相交兩圓的連心線垂直平分兩圓的公共弦137定理 把圓分成n(n3):依
15、次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)180n140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長(zhǎng)142正三角形面積3a4 a表示邊長(zhǎng)143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180n=360化為(n-2)(k-2)=4144弧長(zhǎng)計(jì)算公式:L=n兀R180145扇形面積公式:S扇形=n兀R
16、2360=LR2146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)147完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2實(shí)用工具:常用數(shù)學(xué)公式乘法與因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b| |a-b|a|+|b| |a|b-bab|a-b|a|-|b| -|a|a|a|一元二次方程的解-b+(b2-4ac)/2a -b-(b2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理判別式b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根b2-4ac0 注:方程有兩個(gè)不等的實(shí)根b2-4ac0拋物線標(biāo)準(zhǔn)方程y2=2px y2=-2px x2=2py x2=-2py直棱柱側(cè)面積S=c*h 斜棱
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東省沂源縣自來(lái)水公司招聘筆試參考題庫(kù)含答案解析
- 2025年中國(guó)車輛進(jìn)出口有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年福建廈門中藥廠有限公司招聘筆試參考題庫(kù)含答案解析
- 寧波市人才市場(chǎng)管理辦公室工作人員招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 寧夏中衛(wèi)市口岸和投資促進(jìn)辦公室公開招聘聘用編制人員1人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 天津薊州區(qū)金融服務(wù)中心公開招聘事業(yè)單位人員6人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 國(guó)網(wǎng)華東分部2025年應(yīng)屆高校畢業(yè)生招聘(第一批)【2人】事業(yè)單位高頻重點(diǎn)提升(共500題)附帶答案詳解
- 國(guó)網(wǎng)2025年高校畢業(yè)生招聘交流建設(shè)分公司招聘6人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 國(guó)家統(tǒng)計(jì)局余姚調(diào)查隊(duì)公開招考聘用編外工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 國(guó)家電網(wǎng)公司高級(jí)培訓(xùn)中心2025年第二批高校畢業(yè)生招聘1人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 家具維修和保養(yǎng)協(xié)議書
- 吸氧術(shù)課件教學(xué)課件
- 八年級(jí)數(shù)學(xué)家長(zhǎng)會(huì)課件
- 艦艇損害管制與艦艇損害管制訓(xùn)練
- 光伏發(fā)電項(xiàng)目試驗(yàn)檢測(cè)計(jì)劃
- 床上用品材料采購(gòu)合同
- 民航概論5套模擬試卷考試題帶答案
- 2024屆中國(guó)電建地產(chǎn)校園招聘網(wǎng)申平臺(tái)高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 2024包鋼(集團(tuán))公司招聘941人高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 基于信創(chuàng)底座的智慧交通行業(yè)解決方案
- 2024年青海省中考生物地理合卷試題(含答案解析)
評(píng)論
0/150
提交評(píng)論