初中圓的知識(shí)點(diǎn)歸納(共7頁(yè))_第1頁(yè)
初中圓的知識(shí)點(diǎn)歸納(共7頁(yè))_第2頁(yè)
初中圓的知識(shí)點(diǎn)歸納(共7頁(yè))_第3頁(yè)
初中圓的知識(shí)點(diǎn)歸納(共7頁(yè))_第4頁(yè)
初中圓的知識(shí)點(diǎn)歸納(共7頁(yè))_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上圓章節(jié)知識(shí)點(diǎn)復(fù)習(xí)一、圓的概念集合形式的概念: 1、圓可以看作是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合;2、圓的外部:可以看作是到定點(diǎn)的距離大于定長(zhǎng)的點(diǎn)的集合;3、圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長(zhǎng)的點(diǎn)的集合軌跡形式的概念:1、圓:到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡就是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓;2、垂直平分線:到線段兩端距離相等的點(diǎn)的軌跡是這條線段的垂直平分線(也叫中垂線);3、角的平分線:到角兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線;4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長(zhǎng)的兩條直線;5、到兩條平行線距離相等的點(diǎn)的軌跡是:平行于這兩條平行

2、線且到兩條直線距離都相等的一條直線。二、點(diǎn)與圓的位置關(guān)系1、點(diǎn)在圓內(nèi) 點(diǎn)在圓內(nèi);2、點(diǎn)在圓上 點(diǎn)在圓上;3、點(diǎn)在圓外 點(diǎn)在圓外;三、直線與圓的位置關(guān)系1、直線與圓相離 無交點(diǎn);2、直線與圓相切 有一個(gè)交點(diǎn);3、直線與圓相交 有兩個(gè)交點(diǎn);四、圓與圓的位置關(guān)系外離(圖1) 無交點(diǎn) ;外切(圖2) 有一個(gè)交點(diǎn) ;相交(圖3) 有兩個(gè)交點(diǎn) ;內(nèi)切(圖4) 有一個(gè)交點(diǎn) ;內(nèi)含(圖5) 無交點(diǎn) ; 五、垂徑定理垂徑定理:垂直于弦的直徑平分弦且平分弦所對(duì)的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧; (2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條?。?(3)平分弦所對(duì)的一

3、條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 以上共4個(gè)定理,簡(jiǎn)稱2推3定理:此定理中共5個(gè)結(jié)論中,只要知道其中2個(gè)即可推出其它3個(gè)結(jié)論,即: 是直徑 弧弧 弧弧中任意2個(gè)條件推出其他3個(gè)結(jié)論。推論2:圓的兩條平行弦所夾的弧相等。 即:在中, 弧弧六、圓心角定理圓心角定理:同圓或等圓中,相等的圓心角所對(duì)的弦相等,所對(duì)的弧相等,弦心距相等。 此定理也稱1推3定理,即上述四個(gè)結(jié)論中,只要知道其中的1個(gè)相等,則可以推出其它的3個(gè)結(jié)論,即:; 弧弧七、圓周角定理1、圓周角定理:同弧所對(duì)的圓周角等于它所對(duì)的圓心的角的一半。即:和是弧所對(duì)的圓心角和圓周角 2、圓周角定理的推論:推論1:同弧或等弧所對(duì)的

4、圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧是等弧;即:在中,、都是所對(duì)的圓周角 推論2:半圓或直徑所對(duì)的圓周角是直角;圓周角是直角所對(duì)的弧是半圓,所對(duì)的弦是直徑。即:在中,是直徑 或 是直徑推論3:若三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。即:在中, 是直角三角形或注:此推論實(shí)是初二年級(jí)幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。八、圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。 即:在中, 四邊形是內(nèi)接四邊形 九、切線的性質(zhì)與判定定理(1)切線的判定定理:過半徑外端且垂直于半徑的直線是切線; 兩個(gè)條件:過半徑外

5、端且垂直半徑,二者缺一不可 即:且過半徑外端 是的切線(2)性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖) 推論1:過圓心垂直于切線的直線必過切點(diǎn)。 推論2:過切點(diǎn)垂直于切線的直線必過圓心。以上三個(gè)定理及推論也稱二推一定理:即:過圓心;過切點(diǎn);垂直切線,三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。十、切線長(zhǎng)定理切線長(zhǎng)定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這點(diǎn)和圓心的連線平分兩條切線的夾角。即:、是的兩條切線 平分十一、圓冪定理(1)相交弦定理:圓內(nèi)兩弦相交,交點(diǎn)分得的兩條線段的乘積相等。即:在中,弦、相交于點(diǎn), (2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的

6、比例中項(xiàng)。即:在中,直徑, (3)切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。即:在中,是切線,是割線 (4)割線定理:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等(如上圖)。即:在中,、是割線 十二、兩圓公共弦定理圓公共弦定理:兩圓圓心的連線垂直并且平分這兩個(gè)圓的的公共弦。如圖:垂直平分。即:、相交于、兩點(diǎn) 垂直平分十三、圓的公切線兩圓公切線長(zhǎng)的計(jì)算公式:(1)公切線長(zhǎng):中,;(2)外公切線長(zhǎng):是半徑之差; 內(nèi)公切線長(zhǎng):是半徑之和 。十四、圓內(nèi)正多邊形的計(jì)算(1)正三角形 在中是正三角形,有關(guān)計(jì)算在中進(jìn)行:;(2)正四邊形同理,四邊形的有關(guān)計(jì)算在中進(jìn)行,:(3)正六邊形同理,六邊形的有關(guān)計(jì)算在中進(jìn)行,.十五、扇形、圓柱和圓錐的相關(guān)計(jì)算公式1、扇形:(1)弧長(zhǎng)公式:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論