高中數(shù)學(xué) 2.3.2-2.3.3 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 新人教A版ppt課件_第1頁
高中數(shù)學(xué) 2.3.2-2.3.3 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 新人教A版ppt課件_第2頁
高中數(shù)學(xué) 2.3.2-2.3.3 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 新人教A版ppt課件_第3頁
高中數(shù)學(xué) 2.3.2-2.3.3 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 新人教A版ppt課件_第4頁
高中數(shù)學(xué) 2.3.2-2.3.3 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 新人教A版ppt課件_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第二章平面向量第二章平面向量2.3平面向量的基本定理及坐標(biāo)表示平面向量的基本定理及坐標(biāo)表示2.3.2平面向量的正交分解及坐標(biāo)表示平面向量的正交分解及坐標(biāo)表示2.3.3平面向量的坐標(biāo)運算平面向量的坐標(biāo)運算1理解平面向量的坐標(biāo)的概念,會寫出給定向量的坐標(biāo),會作出已知坐標(biāo)表示的向量(重點)2掌握平面向量的坐標(biāo)運算,能準(zhǔn)確運用向量的加法、減法、實數(shù)與向量的積的坐標(biāo)運算法則進(jìn)行有關(guān)的運算(難點)3了解向量的坐標(biāo)表示與平面內(nèi)點的坐標(biāo)(易混點)1平面向量的正交分解把一個向量分解為兩個_的向量,叫做把向量正交分解互相垂直2平面向量的坐標(biāo)表示3平面向量的坐標(biāo)運算(x1x2,y1y2) (x1x2,y1y2) 相

2、應(yīng)坐標(biāo)的和(差) (x,y) 相應(yīng)坐標(biāo) (x2x1,y2y1) 終點 起點 判一判(判斷下列說法的正誤)(1)兩個向量的終點不同,則這兩個向量的坐標(biāo)一定不同()提示:向量的坐標(biāo)是由終點坐標(biāo)與起點坐標(biāo)決定,終點不同,這兩個向量的坐標(biāo)可能相同(2)向量的坐標(biāo)就是向量終點的坐標(biāo)()提示:只有當(dāng)向量的起點在原點時,其坐標(biāo)與終點坐標(biāo)才能相同(3)在平面直角坐標(biāo)系中,兩相等向量的終點坐標(biāo)一樣()提示:在平面直角坐標(biāo)系中,相等向量的終點坐標(biāo)不一定一樣1點的坐標(biāo)與向量的坐標(biāo)的區(qū)別(1)向量a(x,y)中間用等號連接,而點的坐標(biāo)A(x,y)中間沒有等號(2)平面向量的坐標(biāo)只有當(dāng)起點在原點時,向量的坐標(biāo)才與向量終

3、點的坐標(biāo)相同(3)在平面直角坐標(biāo)系中,符號(x,y)可表示一個點,也可表示一個向量,敘述中應(yīng)指明點(x,y)或向量(x,y)提醒:在平面直角坐標(biāo)系中,平面內(nèi)的點、以原點為起點的向量、有序?qū)崝?shù)對三者之間建立一一對應(yīng)關(guān)系,關(guān)系圖如圖所示:2相等向量坐標(biāo)之間的關(guān)系由向量的坐標(biāo)定義知,兩向量相等等價于它們的坐標(biāo)相等,若a(x1,y1),b(x2,y2),則abx1x2且y1y2.3向量的三種運算體系(1)圖形表示下的幾何運算此運算體系下要注意三角形法則、平行四邊形法則的應(yīng)用平面向量的坐標(biāo)表示求點和向量坐標(biāo)的常用方法(1)求一個點的坐標(biāo),可以轉(zhuǎn)化為求該點相對于坐標(biāo)原點的位置向量的坐標(biāo)(2)在求一個向量時

4、,可以首先求出這個向量的起點坐標(biāo)和終點坐標(biāo),再運用終點坐標(biāo)減去起點坐標(biāo)得到該向量的坐標(biāo)平面向量的坐標(biāo)運算平面向量坐標(biāo)運算的技巧(1)進(jìn)行平面向量坐標(biāo)運算前,先要分清向量坐標(biāo)與向量起點、終點的關(guān)系(2)在進(jìn)行平面向量的坐標(biāo)運算時,應(yīng)先將平面向量用坐標(biāo)的形式表示出來,再根據(jù)向量的坐標(biāo)運算法則進(jìn)行計算(3)在向量的運算中要注意待定系數(shù)法、方程思想和數(shù)形結(jié)合思想的運用設(shè)向量a、b的坐標(biāo)分別是(1,2),(3,5),求ab,ab,3a,2a3b的坐標(biāo)解:ab(1,2)(3,5)(13,25)(2,3);ab(1,2)(3,5)(13,25)(4,7);3a3(1,2)(3,6);2a3b2(1,2)3(3,5)(2,4)(9,15)(29,415)(7,11)規(guī)范解答系列(四)平面向量坐標(biāo)運算的綜合應(yīng)用【題后悟道】坐標(biāo)形式下向量相等的條件及其應(yīng)用(1)坐標(biāo)形式下向量相等的條件:相等向量的對應(yīng)坐標(biāo)相等反之對應(yīng)坐標(biāo)相等的向量是相等向量(2)應(yīng)用:利用坐標(biāo)形式下向量相等的條件,可以建立相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論