高中數(shù)學(xué)必修一二三四五知識點(diǎn)_第1頁
高中數(shù)學(xué)必修一二三四五知識點(diǎn)_第2頁
高中數(shù)學(xué)必修一二三四五知識點(diǎn)_第3頁
高中數(shù)學(xué)必修一二三四五知識點(diǎn)_第4頁
高中數(shù)學(xué)必修一二三四五知識點(diǎn)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高中數(shù)學(xué)必修1知識點(diǎn)第一章 集合與函數(shù)概念一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。2、集合的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。3、集

2、合的表示: 如我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋1用拉丁字母表示集合:A=我校的籃球隊(duì)員,B=1,2,3,4,52集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)N 正整數(shù)集N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R關(guān)于“屬于”的概念:集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 aÏA列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法:語言描述

3、法:例:不是直角三角形的三角形 數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是xÎR| x-3>2或x| x-3>24、集合的分類:1有限集 含有有限個(gè)元素的集合2無限集 含有無限個(gè)元素的集合3空集 不含任何元素的集合例:x|x2=5二、集合間的基本關(guān)系1.“包含”關(guān)系子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2“相等”關(guān)系(55,且55,則5=5) 實(shí)例:設(shè) A=x|x2-1=0 B=-1,1 “元素相同”結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同

4、時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B 任何一個(gè)集合是它本身的子集。AÍA真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作AB(或BA)如果 AÍB, BÍC ,那么 AÍC 如果AÍB 同時(shí) BÍA 那么A=B3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運(yùn)算1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集記作AB(讀作A交B),即AB=x|xA,且xB2、并集的定

5、義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB=x|xA,或xB3、交集與并集的性質(zhì):AA = A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集與補(bǔ)集SCsAA(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的 集合,叫做S中子集A的補(bǔ)集(或余集)記作: CSA 即 CSA =x | xÎS且 xÏA(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。(3)性質(zhì):CU(C UA)=A (C UA

6、)A= (CUA)A=U四、函數(shù)的有關(guān)概念1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個(gè)函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域注意:如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合; 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式定義域補(bǔ)充:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的

7、定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零 (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)

8、函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:表達(dá)式相同;定義域一致 (兩點(diǎn)必須同時(shí)具備)值域補(bǔ)充:(1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2)應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。2. 函數(shù)圖象知識歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (xA)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x A)的圖象C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函

9、數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 即記為C= P(x,y) | y= f(x) , xA 。圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。(2)畫法A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來.B、圖象變換法(請參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析

10、解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯(cuò)誤。3. 了解區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示4什么叫做映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB”給定一個(gè)集合A到B的映射,如果aA,bB.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b 的原象說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),集合A、B及對應(yīng)法則f是確定的;對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從

11、集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;對于映射f:AB來說,則應(yīng)滿足:()集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;()集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);()不要求集合B中的每一個(gè)元素在集合A中都有原象。常用的函數(shù)表示法及各自的優(yōu)點(diǎn): 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù); 解析法:必須注明函數(shù)的定義域; 圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征; 列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征注意:解析法:便于算出函數(shù)值。列表法:便于查出

12、函數(shù)值。圖象法:便于量出函數(shù)值補(bǔ)充一:分段函數(shù) :在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號括起來,并分別注明各部分的自變量的取值情況(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集補(bǔ)充二:復(fù)合函數(shù):如果y=f(u),(uM),u=g(x),(xA),則 y=fg(x)=F(x),(xA) 稱為f、g的復(fù)合函數(shù)。例如: y=2sinX y=2cos(X2+1)5函數(shù)單調(diào)性(1)增函數(shù)設(shè)函數(shù)

13、y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說f(x)在區(qū)間D上是增函數(shù)。區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間 (睇清楚課本單調(diào)區(qū)間的概念)如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2 時(shí),都有f(x1)f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意: 函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì); 必須是對于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1<x2時(shí),總有f(x1)<f(x2) 。(2)圖象

14、的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 變形(通常是因式分解和配方); 定號(即判斷差f(x1)f(x2)的正負(fù)); 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性)(B)圖象法(從圖象上看升降)_(C)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)fg(x)的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:函數(shù)單調(diào)性u=g(

15、x)增增減減y=f(u)增減增減y=fg(x)增減減增注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 2、還記得我們在選修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎?6函數(shù)的奇偶性(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)奇函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)注意: 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性

16、的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱)(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟: 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱; 確定f(x)與f(x)的關(guān)系; 作出相應(yīng)結(jié)論:若f(x) = f(x) 或 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對

17、稱,(1)再根據(jù)定義判定; (2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .7、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)fg(x)的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時(shí),也可用湊配法;若已知抽象函數(shù)表

18、達(dá)式,則常用解方程組消參的方法求出f(x)8函數(shù)最大(小)值 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲?利用圖象求函數(shù)的最大(?。┲?利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞增,在區(qū)間b,c上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞減,在區(qū)間b,c上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b)第二章 基本初等函數(shù)一、指數(shù)函數(shù)一)指數(shù)與指數(shù)冪的運(yùn)算1根式的概念:一般地,如果,那么叫做的次方根(n th root),其中>1,且*當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)

19、負(fù)數(shù)此時(shí),的次方根用符號表示式子叫做根式(radical),這里叫做根指數(shù)(radical exponent),叫做被開方數(shù)(radicand)當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)此時(shí),正數(shù)的正的次方根用符號 表示,負(fù)的次方根用符號表示正的次方根與負(fù)的次方根可以合并成±(>0)由 此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2分?jǐn)?shù)指數(shù)冪正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到

20、有理數(shù)指數(shù)冪3實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)(1)·(2)(3)二)指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential function),其中x是自變量,函數(shù)的定義域?yàn)镽注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和12、指數(shù)函數(shù)的圖象和性質(zhì)a>10<a<1圖象特征函數(shù)性質(zhì)向x、y軸正負(fù)方向無限延伸函數(shù)的定義域?yàn)镽圖象關(guān)于原點(diǎn)和y軸不對稱非奇非偶函數(shù)函數(shù)圖象都在x軸上方函數(shù)的值域?yàn)镽+函數(shù)圖象都過定點(diǎn)(0,1)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函數(shù)在第一象限內(nèi)的圖象縱坐標(biāo)都大于1在第一象限內(nèi)的圖象縱坐標(biāo)都小于1在

21、第二象限內(nèi)的圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都大于1圖象上升趨勢是越來越陡圖象上升趨勢是越來越緩函數(shù)值開始增長較慢,到了某一值后增長速度極快;函數(shù)值開始減小極快,到了某一值后減小速度較慢;注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:(1)在a,b上,值域是或;(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);(3)對于指數(shù)函數(shù),總有;(4)當(dāng)時(shí),若,則 ;二、對數(shù)函數(shù)一)對數(shù)1對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作: ( 底數(shù), 真數(shù), 對數(shù)式)說明: 注意底數(shù)的限制,且; ; 注意對數(shù)的書寫格式兩個(gè)重要對數(shù): 常用對數(shù):以10為底的對數(shù); 自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù)對數(shù)式

22、與指數(shù)式的互化對數(shù)式指數(shù)式 對數(shù)底數(shù) 冪底數(shù) 對數(shù)指數(shù) 真數(shù)冪二)對數(shù)的運(yùn)算性質(zhì)如果,且,那么: ; 注意:換底公式 (,且;,且;)利用換底公式推導(dǎo)下面的結(jié)論(1) ;(2)三)對數(shù)函數(shù)1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+)注意: 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:, 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù) 對數(shù)函數(shù)對底數(shù)的限制:,且2、對數(shù)函數(shù)的性質(zhì):a>10<a<1圖象特征函數(shù)性質(zhì)函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)椋?,)圖象關(guān)于原點(diǎn)和y軸不對稱非奇非偶函數(shù)向y軸正負(fù)方向無限延伸函數(shù)的值域?yàn)镽函數(shù)圖象都過

23、定點(diǎn)(1,0)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函數(shù)第一象限的圖象縱坐標(biāo)都大于0第一象限的圖象縱坐標(biāo)都大于0第二象限的圖象縱坐標(biāo)都小于0第二象限的圖象縱坐標(biāo)都小于0四)冪函數(shù)1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù)2、冪函數(shù)性質(zhì)歸納(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(diǎn)(1,1);(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù)特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù)在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸第三章 函數(shù)

24、的應(yīng)用一、方程的根與函數(shù)的零點(diǎn)1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)3、函數(shù)零點(diǎn)的求法:求函數(shù)的零點(diǎn): (代數(shù)法)求方程的實(shí)數(shù)根; (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)4、二次函數(shù)的零點(diǎn):二次函數(shù)),方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)),方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)),方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn)

25、,二次函數(shù)無零點(diǎn)數(shù)學(xué)必修2知識點(diǎn)1. 多面體的面積和體積公式名稱側(cè)面積(S側(cè))全面積(S全)體 積(V)棱柱棱柱直截面周長×lS側(cè)+2S底S底·h=S直截面·h直棱柱ChS底·h棱錐棱錐各側(cè)面面積之和S側(cè)+S底S底·h正棱錐ch棱臺棱臺各側(cè)面面積之和S側(cè)+S上底+S下底h(S上底+S下底+)正棱臺(c+c)h表中S表示面積,c、c分別表示上、下底面周長,h表示高,h表示斜高,l表示側(cè)棱長。2. 旋轉(zhuǎn)體的面積和體積公式名稱圓柱圓錐圓臺球S側(cè)2rlrl(r1+r2)l S全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R

26、2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l(wèi)、h分別表示母線、高,r表示圓柱、圓錐與球冠的底半徑,r1、r2分別表示圓臺上、下底面半徑,R表示半徑。3、平面的特征:平的,無厚度,可以無限延展.4、平面的基本性質(zhì):公理1、若一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi). 公理2、過不在一條直線上的三點(diǎn),有且只有一個(gè)平面.公理3、若兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.推論1、經(jīng)過一條直線和直線外的一點(diǎn),有且只有一個(gè)平面.推論2、經(jīng)過兩條相交直線,有且只有一個(gè)平面.推論3、經(jīng)過兩條平行直線,有且只有一個(gè)平面.公理4、平行于同一條直線的兩

27、條直線互相平行. 5、等角定理:空間中若兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).推論:若兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等.6、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行.數(shù)學(xué)符號表示:直線與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行.數(shù)學(xué)符號表示:7、平面與平面平行的判定定理:(1)一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行.數(shù)學(xué)符號表示:(2)垂直于同一條直線的兩個(gè)平面平行.符號表示:(3)平行于同一個(gè)平面的兩個(gè)平面平行.符號表示

28、:面面平行的性質(zhì)定理:(1)若兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的任意直線均平行于另一個(gè)平面.(2)若兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行.8、直線與平面垂直的判定定理:(1)一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直.數(shù)學(xué)符號表示:(2)若兩條平行直線中一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面.(3)若一條直線垂直于兩個(gè)平行平面中一個(gè),那么該直線也垂直于另一個(gè)平面.直線與平面垂直的性質(zhì)定理:垂直于同一個(gè)平面的兩條直線平行.9、兩個(gè)平面垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直. 平面與平面垂直的性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直

29、于交線的直線與另一個(gè)平面垂直.數(shù)學(xué)符號表示:10、直線的傾斜角和斜率:(1)設(shè)直線的傾斜角為,斜率為,則.當(dāng)時(shí),斜率不存在.(2)當(dāng)時(shí),;當(dāng)時(shí),.(3)過,的直線斜率.11、兩直線的位置關(guān)系:兩條直線,斜率都存在,則:(1)且(2)(當(dāng)?shù)男甭蚀嬖诘男甭什淮嬖跁r(shí))(3)與重合且12、直線方程的形式:(1)點(diǎn)斜式:(定點(diǎn),斜率存在) (2)斜截式:(斜率存在,在軸上的截距)(3)兩點(diǎn)式:(兩點(diǎn)) (4)一般式:(5)截距式:(在軸上的截距,在軸上的截距)13、直線的交點(diǎn)坐標(biāo):設(shè),則:(1)與相交;(2) ;(3)與重合.14、兩點(diǎn),間的距離公式原點(diǎn)與任一點(diǎn)的距離15、點(diǎn)到直線的距離(1)點(diǎn)到直線的

30、距離(2)點(diǎn)到直線的距離(3)點(diǎn)到直線的距離16、兩條平行直線與間的距離17、過直線與交點(diǎn)的直線方程為18、與直線平行的直線方程為與直線垂直的直線方程為19、中心對稱與軸對稱:(1)中心對稱:設(shè)點(diǎn)關(guān)于點(diǎn)對稱,則(2)軸對稱:設(shè)關(guān)于直線對稱,則:a、時(shí),有且; b、時(shí),有且c、時(shí),有20、圓的標(biāo)準(zhǔn)方程:(圓心,半徑長為)圓心,半徑長為的圓的方程。21、點(diǎn)與圓的位置關(guān)系:設(shè)圓的標(biāo)準(zhǔn)方程,點(diǎn),將M帶入圓的標(biāo)準(zhǔn)方程,結(jié)果>r2在外,<r2在內(nèi)22、圓的一般方程:(1)當(dāng)時(shí),表示以為圓心,為半徑的圓;(2)當(dāng)時(shí),表示一個(gè)點(diǎn);(3)當(dāng)時(shí),不表示任何圖形.23、直線與圓的位置關(guān)系:幾何角度:圓心

31、到直線的距離與半徑大小比較;或代數(shù)角度:帶入方程組算>0、=0、<0.24、圓與圓的位置關(guān)系:幾何角度判斷(圓心距與半徑和差的關(guān)系)(1)相離; (2)外切; (3)相交; (4)內(nèi)切; (5)內(nèi)含.25、過兩圓與交點(diǎn)的圓的方程.當(dāng)時(shí),即兩圓公共弦所在的直線方程.26、點(diǎn),間的距離,高中數(shù)學(xué)必修3知識點(diǎn)第一章 算法初步1.1.1 算法的概念算法的特點(diǎn):(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟

32、,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.(4)不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對于一個(gè)問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.1.1.2 程序框圖1.2.1 輸入、輸出語句和賦值語句3、賦值語句變量表達(dá)式圖形計(jì)算器格式表達(dá)式變量(1)賦值語句的一般格式(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語句中的“”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值

33、號右邊的表達(dá)式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對于一個(gè)變量可以多次賦值。注意:賦值號左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。賦值號左右不能對換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)賦值號“=”與數(shù)學(xué)中的等號意義不同。分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時(shí)執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時(shí)執(zhí)行的操作內(nèi)容;END IF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對IF后的條件

34、進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2輾轉(zhuǎn)相除法與更相減損術(shù)1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商和一個(gè)余數(shù);(2):若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個(gè)商和一個(gè)余數(shù);(3):若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個(gè)商和一個(gè)余數(shù); 依次計(jì)算直至0,此時(shí)所得到的即為所求的最大公約數(shù)。2、更相減損術(shù)我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在九章算術(shù)中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母

35、子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2 用更相減損術(shù)求98與63的最大公約數(shù).分析:(略) 3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是

36、以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到秦九韶算法與排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+.+a1x+a0求值問題f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+an-1xn-2+.+a1)x+a0 =( anxn-2+an-1xn-3+.+a2)x+a1)x+a0 =.=(.( anx+an-1)x+an-2)x+.+a1)x+a0求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2 v3=v2x+an-3 . vn=vn-1x+a0這樣,把n

37、次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。第二章 統(tǒng)計(jì)簡單隨機(jī)抽樣1總體和樣本 在統(tǒng)計(jì)學(xué)中 , 把研究對象的全體叫做總體把每個(gè)研究對象叫做個(gè)體把總體中個(gè)體的總數(shù)叫做總體容量為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:, , , 研究,我們稱它為樣本其中個(gè)體的個(gè)數(shù)稱為樣本容量2簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨 機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。3

38、簡單隨機(jī)抽樣常用的方法: (1)抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:總體變異情況;允許誤差范圍;概率保證程度。4抽簽法: (1)給調(diào)查對象群體中的每一個(gè)對象編號; (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽 (3)對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查 例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動情況。5隨機(jī)數(shù)表法: 例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動。系統(tǒng)抽樣1系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡單隨機(jī)抽樣的辦法抽取。K(抽樣距離)=N(

39、總體規(guī)模)/n(樣本規(guī)模)前提條件:總體中個(gè)體的排列對于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。2系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘Τ闃涌虻囊筝^低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。分層抽樣1分層抽樣(類型抽樣):先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)?/p>

40、次,然后再在各個(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。兩種方法:1先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。2分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。分層標(biāo)準(zhǔn):(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。(3)以那些有

41、明顯分層區(qū)分的變量作為分層變量。3分層的比例問題: (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。 (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征1、本均值:2、樣本標(biāo)準(zhǔn)差:3用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機(jī)抽樣中,這種偏差

42、是不可避免的。雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。4(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍(3)一組數(shù)據(jù)中的最大值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;“去掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理兩個(gè)變量的線性相關(guān)1、概念: (1)回歸直線方程 (2)回歸系數(shù)2回歸直線方程的應(yīng)用 (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)

43、量關(guān)系 (2)利用回歸方程進(jìn)行預(yù)測;把預(yù)報(bào)因子(即自變量x)代入回歸方程對預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。 (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過控制x的范圍來實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。4應(yīng)用直線回歸的注意事項(xiàng) (1)做回歸分析要有實(shí)際意義; (2)回歸分析前,最好先作出散點(diǎn)圖; (3)回歸直線不要外延。第三章 概 率 3.1.3隨機(jī)事件的概率及概率的意義1、基本概念:(1)必然事件:在某種條件下,一定會發(fā)生的事件,叫做必然事件;(2)不可能事件:在某種條件下,一

44、定不會發(fā)生的事件,叫做不可能事件;(3)隨機(jī)事件:在某種條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件;(4)基本事件:試驗(yàn)中不能再分的最簡單的隨機(jī)事件,其他事件可以用它們來描繪,這樣的時(shí)間叫基本事件;(5)基本事件空間:所有基本事件構(gòu)成的集合,叫做基本事件空間,用大寫希臘字母表示;(5)頻數(shù)、頻率:在相同的條件下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例為事件A出現(xiàn)的頻率;(6)概率:在n次重復(fù)進(jìn)行的試驗(yàn)中,時(shí)間A發(fā)生的頻率mn,當(dāng)n很大時(shí),總是在某個(gè)常熟附近擺動,隨著n的增加,擺動幅度越來越小,這時(shí)就把這個(gè)常熟叫做事件A的概率,

45、記作P(A),0P(A)1;(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率 概率的基本性質(zhì)1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB為不可能事件,即AB=,那么稱事件A與事件B互斥;(3)若AB為不可能事件,AB為必然事件,那么稱事件A與事件B互為對立事件;(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AB)=

46、 P(A)+ P(B);若事件A與B為對立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)2、概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0P(A)1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AB)= P(A)+ P(B);3)若事件A與B為對立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與

47、事件B同時(shí)不發(fā)生,而對立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。 3.2.2古典概型(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟; 求出總的基本事件數(shù); 求出事件A所包含的基本事件數(shù),然后利用公式P(A)=(3) 概率的一般加法公式(選學(xué)): 事件的交(或積):由時(shí)間A和B同時(shí)發(fā)生所構(gòu)成的事件D稱為時(shí)間A與B的交(或積),記作D=AB 或D=AB P(AB)= =P(A)+P(B)P(AB) 稱為概率的一般加法公式;3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

48、1、基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=;(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等高中數(shù)學(xué)必修4知識點(diǎn)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定 所在象限的方法:

49、先把各象限均分等份,再從軸的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則 原來是第幾象限對應(yīng)的標(biāo)號即為 終邊所落在的區(qū)域5、長度等于半徑長的弧所對的圓心角叫做弧度6、半徑為的圓的圓心角所對弧的長為,則角的弧度數(shù)的絕對值是7、弧度制與角度制的換算公式:8、若扇形的圓心角為,半徑為,弧長為,周長為 ,面積為,則 ,9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,10、三角函數(shù)在各象限的符號:第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正Pvx y A O M T 11、三角函數(shù)線:,12、同角三角函數(shù)的基本關(guān)系:; 13、三角函數(shù)的誘導(dǎo)公式:,

50、口訣:函數(shù)名稱不變,符號看象限口訣:正弦與余弦互換,符號看象限14、函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的 倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)向左(右)平移 個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象函數(shù)的性質(zhì):振幅:;周期:頻率:相位:;初相:函數(shù),當(dāng)時(shí),取得最小值為 ;當(dāng)

51、時(shí),取得最大值為,則15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì): 圖象定義域值域最值當(dāng) 時(shí),;當(dāng) 時(shí),當(dāng)時(shí),;當(dāng)時(shí),既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性在 上是增函數(shù);在 上是減函數(shù)在上是增函數(shù);在上是減函數(shù)在 上是增函數(shù)對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸16、向量:既有大小,又有方向的量數(shù)量:只有大小,沒有方向的量有向線段的三要素:起點(diǎn)、方向、長度零向量:長度為的向量單位向量:長度等于個(gè)單位的向量平行向量(共線向量):方向相同或相反的非零向量零向量與任一向量平行相等向量:長度相等且方向相同的向量17、向量加法運(yùn)算:三角形法則的特點(diǎn):首尾相連平行四邊形法則的特點(diǎn):共起點(diǎn)三角形不等式: 運(yùn)算性質(zhì):交換律:;結(jié)合律:;坐標(biāo)運(yùn)算:設(shè),則18、向量減法運(yùn)算:三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量坐標(biāo)運(yùn)算:設(shè),則設(shè)、兩點(diǎn)的坐標(biāo)分別為,則19、向量數(shù)乘運(yùn)算:實(shí)數(shù)與向量的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作;當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),運(yùn)算律:;坐標(biāo)運(yùn)算:設(shè),則20、向量共線定理:向量與共線,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論