版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、排列組合典型例題例1 用0到9這10 個(gè)數(shù)字可組成多少個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:沒有重復(fù)數(shù)字;數(shù)字“0”不能排在千位數(shù)上;個(gè)位數(shù)字只能是0、2、4、6、8、,從限制條件入手,可劃分如下: 如果從個(gè)位數(shù)入手,四位偶數(shù)可分為:個(gè)位數(shù)是“0”的四位偶做,個(gè)位數(shù)是2、4、6、8的四位偶數(shù)(這是因?yàn)榱悴荒芊旁谇粩?shù)上)由此解法一與二 如果從千位數(shù)入手四位偶數(shù)可分為:千位數(shù)是1、3、5、7、9和千位數(shù)是2、4、6、8兩類,由此得解法三 如果四位數(shù)劃分為四位奇數(shù)和四位偶數(shù)兩類,先求出四位個(gè)數(shù)的個(gè)數(shù),用排除法,得解法四 解法1:當(dāng)個(gè)位數(shù)上排“0”時(shí),千位,百位,十位上可以從余下的
2、九個(gè)數(shù)字中任選3個(gè)來排列,故有個(gè); 當(dāng)個(gè)位上在“2、4、6、8”中任選一個(gè)來排,則千位上從余下的八個(gè)非零數(shù)字中任選一個(gè),百位,十位上再從余下的八個(gè)數(shù)字中任選兩個(gè)來排,按乘法原理有(個(gè)) 沒有重復(fù)數(shù)字的四位偶數(shù)有 個(gè) 解法2:當(dāng)個(gè)位數(shù)上排“0”時(shí),同解一有個(gè);當(dāng)個(gè)位數(shù)上排2、4、6、8中之一時(shí),千位,百位,十位上可從余下9個(gè)數(shù)字中任選3個(gè)的排列數(shù)中減去千位數(shù)是“0”排列數(shù)得:個(gè) 沒有重復(fù)數(shù)字的四位偶數(shù)有 個(gè) 解法3:千位數(shù)上從1、3、5、7、9中任選一個(gè),個(gè)位數(shù)上從0、2、4、6、8中任選一個(gè),百位,十位上從余下的八個(gè)數(shù)字中任選兩個(gè)作排列有 個(gè)干位上從2、4、6、8中任選一個(gè),個(gè)位數(shù)上從余下的四
3、個(gè)偶數(shù)中任意選一個(gè)(包括0在內(nèi)),百位,十位從余下的八個(gè)數(shù)字中任意選兩個(gè)作排列,有個(gè) 沒有重復(fù)數(shù)字的四位偶數(shù)有 個(gè) 解法4:將沒有重復(fù)數(shù)字的四位數(shù)字劃分為兩類:四位奇數(shù)和四位偶數(shù) 沒有重復(fù)數(shù)字的四位數(shù)有個(gè)其中四位奇數(shù)有個(gè) 沒有重復(fù)數(shù)字的四位偶數(shù)有個(gè)說明:這是典型的簡(jiǎn)單具有限制條件的排列問題,上述四種解法是基本、常見的解法、要認(rèn)真體會(huì)每種解法的實(shí)質(zhì),掌握其解答方法,以期靈活運(yùn)用典型例題二例2 三個(gè)女生和五個(gè)男生排成一排 (1)如果女生必須全排在一起,可有多少種不同的排法? (2)如果女生必須全分開,可有多少種不同的排法? (3)如果兩端都不能排女生,可有多少種不同的排法? (4)如果兩端不能都排
4、女生,可有多少種不同的排法?解:(1)(捆綁法)因?yàn)槿齻€(gè)女生必須排在一起,所以可以先把她們看成一個(gè)整體,這樣同五個(gè)男生合一起共有六個(gè)元素,然成一排有種不同排法對(duì)于其中的每一種排法,三個(gè)女生之間又都有對(duì)種不同的排法,因此共有種不同的排法 (2)(插空法)要保證女生全分開,可先把五個(gè)男生排好,每?jī)蓚€(gè)相鄰的男生之間留出一個(gè)空檔這樣共有4個(gè)空檔,加上兩邊兩個(gè)男生外側(cè)的兩個(gè)位置,共有六個(gè)位置,再把三個(gè)女生插入這六個(gè)位置中,只要保證每個(gè)位置至多插入一個(gè)女生,就能保證任意兩個(gè)女生都不相鄰由于五個(gè)男生排成一排有種不同排法,對(duì)于其中任意一種排法,從上述六個(gè)位置中選出三個(gè)來讓三個(gè)女生插入都有種方法,因此共有種不同
5、的排法 (3)解法1:(位置分析法)因?yàn)閮啥瞬荒芘排?,所以兩端只能挑選5個(gè)男生中的2個(gè),有種不同的排法,對(duì)于其中的任意一種排法,其余六位都有種排法,所以共有種不同的排法 解法2:(間接法)3個(gè)女生和5個(gè)男生排成一排共有種不同的排法,從中扣除女生排在首位的種排法和女生排在末位的種排法,但這樣兩端都是女生的排法在扣除女生排在首位的情況時(shí)被扣去一次,在扣除女生排在未位的情況時(shí)又被扣去一次,所以還需加一次回來,由于兩端都是女生有種不同的排法,所以共有種不同的排法解法3:(元素分析法)從中間6個(gè)位置中挑選出3個(gè)來讓3個(gè)女生排入,有種不同的排法,對(duì)于其中的任意一種排活,其余5個(gè)位置又都有種不同的排法,所
6、以共有種不同的排法,(4)解法1:因?yàn)橹灰髢啥瞬欢寂排匀绻孜慌帕四猩?,則未位就不再受條件限制了,這樣可有種不同的排法;如果首位排女生,有種排法,這時(shí)末位就只能排男生,有種排法,首末兩端任意排定一種情況后,其余6位都有種不同的排法,這樣可有種不同排法因此共有種不同的排法解法2:3個(gè)女生和5個(gè)男生排成一排有種排法,從中扣去兩端都是女生排法種,就能得到兩端不都是女生的排法種數(shù)因此共有種不同的排法 說明:解決排列、組合(下面將學(xué)到,由于規(guī)律相同,順便提及,以下遇到也同樣處理)應(yīng)用問題最常用也是最基本的方法是位置分析法和元素分析法若以位置為主,需先滿足特殊位置的要求,再處理其它位置,有兩個(gè)以
7、上約束條件,往往是考慮一個(gè)約束條件的同時(shí)要兼顧其它條件若以元素為主,需先滿足特殊元素要求再處理其它的元素 間接法有的也稱做排除法或排異法,有時(shí)用這種方法解決問題來得簡(jiǎn)單、明快 捆綁法、插入法對(duì)于有的問題確是適用的好方法,要認(rèn)真搞清在什么條件下使用典型例題三例3 排一張有5個(gè)歌唱節(jié)目和4個(gè)舞蹈節(jié)目的演出節(jié)目單。 (1)任何兩個(gè)舞蹈節(jié)目不相鄰的排法有多少種? (2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種? 解:(1)先排歌唱節(jié)目有種,歌唱節(jié)目之間以及兩端共有6個(gè)位子,從中選4個(gè)放入舞蹈節(jié)目,共有中方法,所以任兩個(gè)舞蹈節(jié)目不相鄰排法有:43200. (2)先排舞蹈節(jié)目有中方法,在舞蹈節(jié)目之間以及兩
8、端共有5個(gè)空位,恰好供5個(gè)歌唱節(jié)目放入。所以歌唱節(jié)目與舞蹈節(jié)目間隔排列的排法有:2880種方法。 說明:對(duì)于“間隔”排列問題,我們往往先排個(gè)數(shù)較少的元素,再讓其余元素插空排列。否則,若先排個(gè)數(shù)較多的元素,再讓其余元素插空排時(shí),往往個(gè)數(shù)較多的元素有相鄰情況。如本題(2)中,若先排歌唱節(jié)目有,再排舞蹈節(jié)目有,這樣排完之后,其中含有歌唱節(jié)目相鄰的情況,不符合間隔排列的要求。典型例題四例4 某一天的課程表要排入政治、語文、數(shù)學(xué)、物理、體育、美術(shù)共六節(jié)課,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),那么共有多少種不同的排課程表的方法分析與解法1:6六門課總的排法是,其中不符合要求的可分為:體育排在第一書有種排
9、法,如圖中;數(shù)學(xué)排在最后一節(jié)有種排法,如圖中;但這兩種排法,都包括體育排在第一書數(shù)學(xué)排在最后一節(jié),如圖中,這種情況有種排法,因此符合條件的排法應(yīng)是: (種) 分析與解法2:根據(jù)要求,課程表安排可分為4種情況: (1)體育、數(shù)學(xué)既不排在第一節(jié)也不排在最后一節(jié),這種排法有種; (2)數(shù)學(xué)排在第一節(jié)但體育不排在最后一節(jié),有排法種; (3)體育排在最后一節(jié)但數(shù)學(xué)不排在第一節(jié),有排法種; (4)數(shù)學(xué)排在第一節(jié),體育排在最后一節(jié),有排法 這四類排法并列,不重復(fù)也不遺漏,故總的排法有: (種) 分析與解法3:根據(jù)要求,課表安排還可分下述4種情況: (1)體育,數(shù)學(xué)既不在最后也不在開頭一節(jié),有種排法; (2)
10、數(shù)學(xué)排在第一節(jié),體育不排在最后一節(jié),有4種排法; (3)體育在最后一書,數(shù)學(xué)木在第一節(jié)有4種排法; (4)數(shù)學(xué)在第一節(jié),體育在最后一節(jié)有1種排法 上述 21種排法確定以后,僅剩余下四門課程排法是種,故總排法數(shù)為(種) 下面再提出一個(gè)問題,請(qǐng)予解答 問題:有6個(gè)人排隊(duì),甲不在排頭,乙不在排尾,問并肩多少種不同的排法 請(qǐng)讀者完成此題 說明:解答排列、組合問題要注意一題多解的練習(xí),不僅能提高解題能力,而且是檢驗(yàn)所解答問題正確與否的行之有效的方法典型例題五例5現(xiàn)有輛公交車、位司機(jī)和位售票員,每輛車上需配位司機(jī)和位售票員問車輛、司機(jī)、售票員搭配方案一共有多少種?分析:可以把輛車看成排了順序的三個(gè)空:,然
11、后把名司機(jī)和名售票員分別填入因此可認(rèn)為事件分兩步完成,每一步都是一個(gè)排列問題解:分兩步完成第一步,把名司機(jī)安排到輛車中,有種安排方法;第二步把名售票員安排到輛車中,有種安排方法故搭配方案共有種說明:許多復(fù)雜的排列問題,不可能一步就能完成而應(yīng)分解開來考慮:即經(jīng)適當(dāng)?shù)胤诸惓煞只蚍植街?,?yīng)用分類計(jì)數(shù)原理、分步計(jì)數(shù)原理原理去解決在分類或分步時(shí),要盡量把整個(gè)事件的安排過程考慮清楚,防止分類或分步的混亂典型例題六例6下是表是高考第一批錄取的一份志愿表如果有所重點(diǎn)院校,每所院校有個(gè)專業(yè)是你較為滿意的選擇若表格填滿且規(guī)定學(xué)校沒有重復(fù),同一學(xué)校的專業(yè)也沒有重復(fù)的話,你將有多少種不同的填表方法?分析:填寫學(xué)校時(shí)
12、是有順序的,因?yàn)檫@涉及到第一志愿、第二志愿、第三志愿的問題;同一學(xué)校的兩個(gè)專業(yè)也有順序,要區(qū)分出第一專業(yè)和第二專業(yè)因此這是一個(gè)排列問題解:填表過程可分兩步第一步,確定填報(bào)學(xué)校及其順序,則在所學(xué)校中選出所并加排列,共有種不同的排法;第二步,從每所院校的個(gè)專業(yè)中選出個(gè)專業(yè)并確定其順序,其中又包含三小步,因此總的排列數(shù)有種綜合以上兩步,由分步計(jì)數(shù)原理得不同的填表方法有:種說明:要完成的事件與元素的排列順序是否有關(guān),有時(shí)題中并未直接點(diǎn)明,需要根據(jù)實(shí)際情景自己判斷,特別是學(xué)習(xí)了后面的“組合”之后這一點(diǎn)尤其重要“選而且排”(元素之間有順序要求)的是排列,“選而不排”(元素之間無順序要求)的是組合另外,較復(fù)
13、雜的事件應(yīng)分解開考慮典型例題七例5名同學(xué)排隊(duì)照相(1)若分成兩排照,前排人,后排人,有多少種不同的排法?(2)若排成兩排照,前排人,后排人,但其中甲必須在前排,乙必須在后排,有多少種不同的排法?(3)若排成一排照,甲、乙、丙三人必須相鄰,有多少種不同的排法?(4)若排成一排照,人中有名男生,名女生,女生不能相鄰,有多少種不面的排法?分析:(1)可分兩步完成:第一步,從人中選出人排在前排,有種排法;第二步,剩下的人排在后排,有種排法,故一共有種排法事實(shí)上排兩排與排成一排一樣,只不過把第個(gè)位子看成第二排而已,排法總數(shù)都是,相當(dāng)于個(gè)人的全排列(2)優(yōu)先安排甲、乙(3)用“捆綁法”(4)用“插空法”解
14、:(1) 種(2)第一步安排甲,有種排法;第二步安排乙,有種排法;第三步余下的人排在剩下的個(gè)位置上,有種排法,由分步計(jì)數(shù)原理得,符合要求的排法共有種(3)第一步,將甲、乙、丙視為一個(gè)元素,有其余個(gè)元素排成一排,即看成個(gè)元素的全排列問題,有種排法;第二步,甲、乙、丙三人內(nèi)部全排列,有種排法由分步計(jì)數(shù)原理得,共有種排法(4)第一步,名男生全排列,有種排法;第二步,女生插空,即將名女生插入名男生之間的個(gè)空位,這樣可保證女生不相鄰,易知有種插入方法由分步計(jì)數(shù)原理得,符合條件的排法共有:種說明:(1)相鄰問題用“捆綁法”,即把若干個(gè)相鄰的特殊元素“捆綁”為一個(gè)“大元素”,與其他普通元素全排列;最后再“松
15、綁”,將這些特殊元素進(jìn)行全排列(2)不相鄰問題用“插空法”,即先安排好沒有限制條件的元素,然后再將有限制條件的元素按要求插入排好的元素之間典型例題八例8從五個(gè)數(shù)字中每次取出三個(gè)不同的數(shù)字組成三位數(shù),求所有三位數(shù)的和分析:可以從每個(gè)數(shù)字出現(xiàn)的次數(shù)來分析,例如“”,當(dāng)它位于個(gè)位時(shí),即形如的數(shù)共有個(gè)(從四個(gè)數(shù)中選兩個(gè)填入前面的兩個(gè)空),當(dāng)這些數(shù)相加時(shí),由“”所產(chǎn)生的和是當(dāng)位于十位時(shí),即形如的數(shù)也有,那么當(dāng)這些數(shù)相加時(shí),由“”產(chǎn)生的和應(yīng)是當(dāng)位于面位時(shí),可同理分析然后再依次分析的情況解:形如的數(shù)共有個(gè),當(dāng)這些數(shù)相加時(shí),由“”產(chǎn)生的和是;形如的數(shù)也有個(gè),當(dāng)這些數(shù)相加時(shí),由“”產(chǎn)生的和是;形如的數(shù)也有個(gè),當(dāng)
16、這些數(shù)相加時(shí),由“”產(chǎn)生的和應(yīng)是這樣在所有三位數(shù)的和中,由“”產(chǎn)生的和是同理由產(chǎn)生的和分別是,因此所有三位數(shù)的和是說明:類似于這種求“數(shù)字之和”的問題都可以用分析數(shù)字出現(xiàn)次數(shù)的辦法來解決如“由四個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù),若所有這些四位數(shù)的各數(shù)位上的數(shù)字之和為,求數(shù)”本題的特殊性在于,由于是全排列,每個(gè)數(shù)字都要選用,故每個(gè)數(shù)字均出現(xiàn)了次,故有,得典型例題九例9計(jì)算下列各題:(1) ;(2) ;(3) ;(4) (5) 解:(1) ;(2) ;(3)原式;(4)原式;(5),說明:準(zhǔn)確掌握好排列公式是順利進(jìn)行計(jì)算的關(guān)鍵本題計(jì)算中靈活地用到下列各式:;使問題解得簡(jiǎn)單、快捷典型例題十例10六人排
17、一列縱隊(duì),限定要排在的前面(與可以相鄰,也可以不相鄰),求共有幾種排法對(duì)這個(gè)題目,、四位同學(xué)各自給出了一種算式:的算式是;的算式是;的算式是;的算式是上面四個(gè)算式是否正確,正確的加以解釋,不正確的說明理由解:中很顯然,“在前的六人縱隊(duì)”的排隊(duì)數(shù)目與“在前的六人縱隊(duì)”排隊(duì)數(shù)目相等,而“六人縱隊(duì)”的排法數(shù)目應(yīng)是這二者數(shù)目之和這表明:的算式正確中把六人排隊(duì)這件事劃分為占位,占位,其他四人占位這樣三個(gè)階段,然后用乘法求出總數(shù),注意到占位的狀況決定了占位的方法數(shù),第一階段,當(dāng)占據(jù)第一個(gè)位置時(shí),占位方法數(shù)是;當(dāng)占據(jù)第2個(gè)位置時(shí),占位的方法數(shù)是;當(dāng)占據(jù)第5個(gè)位置時(shí),占位的方法數(shù)是,當(dāng),占位后,再排其他四人,
18、他們有種排法,可見的算式是正確的中可理解為從6個(gè)位置中選4個(gè)位置讓占據(jù),這時(shí),剩下的兩個(gè)位置依前后順序應(yīng)是的因此的算式也正確中把6個(gè)位置先圈定兩個(gè)位置的方法數(shù),這兩個(gè)位置讓占據(jù),顯然,占據(jù)這兩個(gè)圈定的位置的方法只有一種(要在的前面),這時(shí),再排其余四人,又有種排法,可見的算式是對(duì)的說明:下一節(jié)組合學(xué)完后,可回過頭來學(xué)習(xí)的解法典型例題十一例11八個(gè)人分兩排坐,每排四人,限定甲必須坐在前排,乙、丙必須坐在同一排,共有多少種安排辦法?解法1:可分為“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”兩類情況應(yīng)當(dāng)使用加法原理,在每類情況下,劃分“乙丙坐下”、“甲坐下”;“其
19、他五人坐下”三個(gè)步驟,又要用到分步計(jì)數(shù)原理,這樣可有如下算法:(種)解法2:采取“總方法數(shù)減去不命題意的所有方法數(shù)”的算法把“甲坐在第一排的八人坐法數(shù)”看成“總方法數(shù)”,這個(gè)數(shù)目是在這種前提下,不合題意的方法是“甲坐第一排,且乙、丙坐兩排的八人坐法”這個(gè)數(shù)目是其中第一個(gè)因數(shù)表示甲坐在第一排的方法數(shù),表示從乙、丙中任選出一人的辦法數(shù),表示把選出的這個(gè)人安排在第一排的方法數(shù),下一個(gè)則表示乙、丙中沿未安排的那個(gè)人坐在第二排的方法數(shù),就是其他五人的坐法數(shù),于是總的方法數(shù)為(種)說明:解法2可在學(xué)完組合后回過頭來學(xué)習(xí)典型例題十二例12 計(jì)劃在某畫廊展出10幅不同的畫,其中1幅水彩畫、4幅油畫、5幅國畫,
20、排成一行陳列,要求同一品種的畫必須連在一起,并且不彩畫不放在兩端,那么不同陳列方式有()ABCD解:將同一品種的畫“捆”在一起,注意到水彩畫不放在兩端,共有種排列但4幅油畫、5幅國畫本身還有排列順序要求所以共有種陳列方式應(yīng)選D說明:關(guān)于“若干個(gè)元素相鄰”的排列問題,一般使用“捆綁”法,也就是將相鄰的若干個(gè)元素“捆綁”在一起,看作一個(gè)大元素,與其他的元素進(jìn)行全排列;然后,再“松綁”,將被“捆綁”的若干元素,內(nèi)部進(jìn)行全排列本例題就是一個(gè)典型的用“捆綁”法來解答的問題典型例題十三例13 由數(shù)字組成沒有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)的個(gè)數(shù)共有()A210B300C464D600解法1:(直接
21、法):分別用作十萬位的排列數(shù),共有種,所以其中個(gè)位數(shù)字小于十位數(shù)字的這樣的六位數(shù)有個(gè)解法2:(間接法):取個(gè)數(shù)字排列有,而作為十萬位的排列有,所以其中個(gè)位數(shù)字小于十位數(shù)字的這樣的六位數(shù)有(個(gè))應(yīng)選B說明:(1)直接法、間接法是解決有關(guān)排列應(yīng)用題的兩種基本方法,何時(shí)使用直接法或間接法要視問題而定,有的問題如果使用直接法解決比較困難或者比較麻煩,這時(shí)應(yīng)考慮能否用間接法來解(2)“個(gè)位數(shù)字小于十位數(shù)字”與“個(gè)位數(shù)字大于十位數(shù)字”具有對(duì)稱性,這兩類的六位數(shù)個(gè)數(shù)一樣多,即各占全部六位數(shù)的一半,同類問題還有6個(gè)人排隊(duì)照像時(shí),甲必須站在乙的左側(cè),共有多少種排法典型例題十四例14 用,這五個(gè)數(shù)字,組成沒有重復(fù)
22、數(shù)字的三位數(shù),其中偶數(shù)共有()A24個(gè)B30個(gè)C40個(gè)D60個(gè)分析:本題是帶有附加條件的排列問題,可以有多種思考方法,可分類,可分步,可利用概率,也可利用本題所提供的選擇項(xiàng)分析判斷解法1:分類計(jì)算將符合條件的偶數(shù)分為兩類一類是2作個(gè)位數(shù),共有個(gè),另一類是4作個(gè)位數(shù),也有個(gè)因此符合條件的偶數(shù)共有個(gè)解法2:分步計(jì)算先排個(gè)位數(shù)字,有種排法,再排十位和百位數(shù)字,有種排法,根據(jù)分步計(jì)數(shù)原理,三位偶數(shù)應(yīng)有個(gè)解法3:按概率算用這個(gè)數(shù)字可以組成沒有重復(fù)數(shù)字的三位數(shù)共有個(gè),其中偶點(diǎn)其中的因此三位偶數(shù)共有個(gè)解法4:利用選擇項(xiàng)判斷用這個(gè)數(shù)字可以組成沒有重復(fù)數(shù)字的三位數(shù)共有個(gè)其中偶數(shù)少于奇數(shù),因此偶數(shù)的個(gè)數(shù)應(yīng)少于個(gè),
23、四個(gè)選擇項(xiàng)所提供的答案中,只有符合條件應(yīng)選典型例題十五例15(1)計(jì)算(2)求()的個(gè)位數(shù)字分析:本題如果直接用排列數(shù)公式計(jì)算,在運(yùn)算上比較困難,現(xiàn)在我們可以從和式中項(xiàng)的特點(diǎn)以及排列數(shù)公式的特點(diǎn)兩方面考慮在(1)中,項(xiàng)可抽象為,(2)中,項(xiàng)為,當(dāng)時(shí),乘積中出現(xiàn)5和2,積的個(gè)位數(shù)為0,在加法運(yùn)算中可不考慮解:(1)由原式(2)當(dāng)時(shí),的個(gè)位數(shù)為0,()的個(gè)位數(shù)字與的個(gè)位數(shù)字相同而,的個(gè)位數(shù)字為3說明:對(duì)排列數(shù)公式特點(diǎn)的分析是我們解決此類問題的關(guān)鍵,比如:求證:,我們首先可抓等式右邊的,左邊右邊典型例題十六例16用共六個(gè)數(shù)字,組成無重復(fù)數(shù)字的自然數(shù),(1)可以組成多少個(gè)無重復(fù)數(shù)字的位偶數(shù)?(2)可以組成多少個(gè)無重復(fù)數(shù)字且被整除的三位數(shù)?分析:位偶數(shù)要求個(gè)位是偶數(shù)且首位數(shù)字不能是,由于個(gè)位用或者不用數(shù)字,對(duì)確定首位數(shù)字有影響,所以需要就個(gè)位數(shù)字用或者用進(jìn)行分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市照明工程承包服務(wù)合同3篇
- 2025年度幼兒園窗戶安全改造及責(zé)任認(rèn)定合同4篇
- 2024年綜合安防系統(tǒng)集成服務(wù)合同
- 2025年度商業(yè)場(chǎng)所蟲害防治與形象維護(hù)服務(wù)合同4篇
- 2025年度生態(tài)園區(qū)代建工程合同模板4篇
- 2025年度殯儀館遺體運(yùn)輸與悼念活動(dòng)全程服務(wù)合同書3篇
- 2024年版婚內(nèi)共同財(cái)產(chǎn)管理及使用合同
- 2025年度新能源儲(chǔ)能項(xiàng)目搭建與銷售合同4篇
- 2025年度化工企業(yè)環(huán)境風(fēng)險(xiǎn)防控合同3篇
- 2025年度大豆國際貿(mào)易結(jié)算與清算服務(wù)合同3篇
- 直播帶貨助農(nóng)現(xiàn)狀及發(fā)展對(duì)策研究-以抖音直播為例(開題)
- 腰椎間盤突出疑難病例討論
- 《光伏發(fā)電工程工程量清單計(jì)價(jià)規(guī)范》
- 2023-2024學(xué)年度人教版四年級(jí)語文上冊(cè)寒假作業(yè)
- (完整版)保證藥品信息來源合法、真實(shí)、安全的管理措施、情況說明及相關(guān)證明
- 營銷專員績(jī)效考核指標(biāo)
- 陜西麟游風(fēng)電吊裝方案專家論證版
- 供應(yīng)商審核培訓(xùn)教程
- 【盒馬鮮生生鮮類產(chǎn)品配送服務(wù)問題及優(yōu)化建議分析10000字(論文)】
- 肝硬化心衰患者的護(hù)理查房課件
- 2023年四川省樂山市中考數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論