版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上備戰(zhàn)高考:高考數(shù)學(xué)易錯知識點歸納學(xué)習(xí)方法網(wǎng)小編為大家整理了高考數(shù)學(xué)易錯知識點,非常實用,趕緊看看吧。備戰(zhàn)高考:高考數(shù)學(xué)易錯知識點歸納2018高考數(shù)學(xué)易錯知識點匯總,供同學(xué)們參考學(xué)習(xí)。一。集合與函數(shù)1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。2.在應(yīng)用條件時,易A忽略是空集的情況3.你會用補集的思想解決有關(guān)問題嗎?4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別。6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。7.判斷函數(shù)奇偶性時,
2、易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱。8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域。9.原函數(shù)在區(qū)間-a,a上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負)和導(dǎo)數(shù)法11. 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?比較函數(shù)值的大小;解抽象函數(shù)不等式;求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?14.解對數(shù)
3、函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?二。不等式18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.19.絕對值不等式的解法及其幾何意義是什么?20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式
4、的注意事項是什么?21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是”.22. 在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。23. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a0,a三。數(shù)列24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道
5、無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。四。三角函數(shù)29.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?31. 在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到
6、正弦函數(shù)、余弦函數(shù)的有界性了嗎?32. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)33. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是34.你還記得某些特殊角的三角函數(shù)值嗎?35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象
7、的解析式為,即。(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即。(3)點的平移公式:點按向量平移到點,則。37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時易忘比值還等于2R.五。平面向量40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。41.數(shù)量積與兩個實數(shù)乘積的區(qū)別:在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。已知實數(shù),且,則a=c,但在向量的數(shù)量積中
8、沒有。在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。六。解析幾何43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。46. 定比分點的坐標(biāo)公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?47. 對不重合的兩條直線(建議在解題時,討論后利用斜率和截距)48. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不
9、要忘記當(dāng)時,直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。49.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(設(shè)出變量,寫出目標(biāo)函數(shù)寫出線性約束條件畫出可行域作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解應(yīng)用題一定要有答。)50.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?53. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙
10、曲線中的結(jié)論?)54. 在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?七。立體幾何56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。57.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?58.三垂線定理及其逆定理你記住了
11、嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見59.線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。61.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用
12、銳角還是其補角,還是兩種情況都有可能。62.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?63. 兩條異面直線所成的角的范圍:090 p=直線與平面所成的角的范圍:0o二面角的平面角的取值范圍:018064.你知道異面直線上兩點間的距離公式如何運用嗎?65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。66.立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?67.棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì)。這些知識你掌握了嗎?(注意運用向量的方法解題)68.球及其性質(zhì);經(jīng)
13、緯度定義易混。 經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。 這些知識你掌握了嗎?八。排列、組合和概率69. 解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法。70.二項式系數(shù)與展開式某一項的系數(shù)易混, 第r+1項的二項式系數(shù)為 。二項式系數(shù)最大項與展開式中系數(shù)最大項易混。二項式系數(shù)最大項為中間一項或兩項;展開式中系數(shù)最大項的求法要用解不等式組來確定r.71.你掌握了三種常見的概率公式
14、嗎?(等可能事件的概率公式;互斥事件有一個發(fā)生的概率公式;相互獨立事件同時發(fā)生的概率公式。)72. 二項式展開式的通項公式、n次獨立重復(fù)試驗中事件A發(fā)生k次的概率易記混。通項公式:它是第r+1項而不是第r項;事件A發(fā)生k次的概率: .其中k=0,1,2,3,n,且073.求分布列的解答題你能把步驟寫全嗎?74.如何對總體分布進行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)75.你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中
15、表示標(biāo)準(zhǔn)正態(tài)總體取值小于 的概率)九。導(dǎo)數(shù)及其應(yīng)用76.在點處可導(dǎo)的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導(dǎo)數(shù)可解決哪些問題?具體步驟還記得嗎?77.你會用“在其定義域內(nèi)可導(dǎo),且不恒為零,則在某區(qū)間上單調(diào)遞增(減)對恒成立。”解決有關(guān)函數(shù)的單調(diào)性問題嗎?一般說來,“教師”概念之形成經(jīng)歷了十分漫長的歷史。楊士勛(唐初學(xué)者,四門博士)春秋谷梁傳疏曰:“師者教人以不及,故謂師為師資也”。這兒的“師資”,其實就是先秦而后歷代對教師的別稱之一。韓非子也有云:“今有不才之子師長教之弗為變”其“師長”當(dāng)然也指教師。這兒的“師資”和“師長”可稱為“教師”概念的雛形,但仍說不上是名副其實的“教師
16、”,因為“教師”必須要有明確的傳授知識的對象和本身明確的職責(zé)。78.你知道“函數(shù)在點處可導(dǎo)”是“函數(shù)在點處連續(xù)”的什么條件嗎要練說,先練膽。說話膽小是幼兒語言發(fā)展的障礙。不少幼兒當(dāng)眾說話時顯得膽怯:有的結(jié)巴重復(fù),面紅耳赤;有的聲音極低,自講自聽;有的低頭不語,扯衣服,扭身子??傊f話時外部表現(xiàn)不自然。我抓住練膽這個關(guān)鍵,面向全體,偏向差生。一是和幼兒建立和諧的語言交流關(guān)系。每當(dāng)和幼兒講話時,我總是笑臉相迎,聲音親切,動作親昵,消除幼兒畏懼心理,讓他能主動的、無拘無束地和我交談。二是注重培養(yǎng)幼兒敢于當(dāng)眾說話的習(xí)慣?;蛟谡n堂教學(xué)中,改變過去老師講學(xué)生聽的傳統(tǒng)的教學(xué)模式,取消了先舉手后發(fā)言的約束,
17、多采取自由討論和談話的形式,給每個幼兒較多的當(dāng)眾說話的機會,培養(yǎng)幼兒愛說話敢說話的興趣,對一些說話有困難的幼兒,我總是認真地耐心地聽,熱情地幫助和鼓勵他把話說完、說好,增強其說話的勇氣和把話說好的信心。三是要提明確的說話要求,在說話訓(xùn)練中不斷提高,我要求每個幼兒在說話時要儀態(tài)大方,口齒清楚,聲音響亮,學(xué)會用眼神。對說得好的幼兒,即使是某一方面,我都抓住教育,提出表揚,并要其他幼兒模仿。長期堅持,不斷訓(xùn)練,幼兒說話膽量也在不斷提高。要練說,得練聽。聽是說的前提,聽得準(zhǔn)確,才有條件正確模仿,才能不斷地掌握高一級水平的語言。我在教學(xué)中,注意聽說結(jié)合,訓(xùn)練幼兒聽的能力,課堂上,我特別重視教師的語言,我對幼兒說話,注意聲音清楚,高低起伏,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年果蔬解毒清洗機項目投資價值分析報告
- 2024至2030年氣體手泵項目投資價值分析報告
- 保安職責(zé)合同范例
- 2024至2030年含底三節(jié)杯項目投資價值分析報告
- 陜西能源職業(yè)技術(shù)學(xué)院《植物病蟲害防治》2023-2024學(xué)年第一學(xué)期期末試卷
- 貨車氣囊銷售合同范例
- 商家轉(zhuǎn)讓客戶合同范例
- 專項清潔合同范例
- 2024年離異父母子女互動協(xié)議
- 蚌埠裝飾裝修合同范例
- 一氯二氟甲烷安全技術(shù)說明書MSDS
- 企業(yè)外來人員管理制度規(guī)章制度
- 石油化工建設(shè)工程竣工報告
- 洞室開挖安全教育培訓(xùn)
- 房地產(chǎn)運營管理工作思路
- 決策分析案例分析報告
- 任務(wù)5.6 泰森多邊形分析
- 復(fù)旦大學(xué)免疫實驗小鼠脾臟單個核細胞分離及細胞計數(shù)
- 《危重病醫(yī)學(xué)》試題庫
- 會理衛(wèi)生系統(tǒng)招聘2022年考試真題及答案解析【最全版】
- 苯-乙苯連續(xù)精餾塔的設(shè)計
評論
0/150
提交評論