版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、參數(shù)法求軌跡方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)深入理解曲線的參數(shù)方程與普通方程的區(qū)別與聯(lián)系,進(jìn)一步掌握參數(shù)方程與普通方程的互化方法(二)能力訓(xùn)練點(diǎn)掌握運(yùn)用參數(shù)求軌跡方程的方法,了解設(shè)參的基本原則和選參的一般依據(jù),能順利消參并討論軌跡的純粹性和完備性,培養(yǎng)多向思維的流暢性(三)學(xué)科滲透點(diǎn)通過學(xué)習(xí)選參方法,學(xué)會(huì)透過現(xiàn)象挖掘本質(zhì)的哲學(xué)思想方法二、教材分析1重點(diǎn):運(yùn)用參數(shù)求軌跡方程的方法2難點(diǎn):選擇參數(shù)應(yīng)遵循的一般依據(jù),消參的技術(shù)與軌跡的純粹性完備性討論3疑點(diǎn):設(shè)參的基本原則三、活動(dòng)設(shè)計(jì)1活動(dòng):問答、思考2教具:投影儀四、教學(xué)過程(一)回憶、點(diǎn)題和明確任務(wù)求動(dòng)點(diǎn)的軌跡方程,如果動(dòng)點(diǎn)坐標(biāo)x、y之間的關(guān)系
2、比較明顯,那么可以用直接法,也就是建系、列式、化簡如果動(dòng)點(diǎn)坐標(biāo)x、y之間的關(guān)系比較隱蔽,但動(dòng)點(diǎn)在運(yùn)動(dòng)過程中符合某種二次曲線的定義,那么可以用定義法,也就是定型(曲線類型)、定位(曲線位置)、定量(曲線幾何量),然后直接運(yùn)用二次曲線的方程寫出動(dòng)點(diǎn)的軌跡方程如果動(dòng)點(diǎn)坐標(biāo)x、y之間的關(guān)系很隱蔽并且很難判斷動(dòng)點(diǎn)符合某種二次曲線的定義,那么就可以引進(jìn)一些參數(shù),用這些參數(shù)把x、y之間的那種隱蔽關(guān)系間接地連起來,然后消掉參數(shù),這就是所謂的參數(shù)法求軌跡方程同學(xué)們常用的交軌法、換標(biāo)法,實(shí)際上也是消去一些元,留下動(dòng)點(diǎn)坐標(biāo)x、y的方法,都可以叫參數(shù)法在實(shí)踐中大家已經(jīng)知道,參數(shù)法求軌跡方程的步驟是:首先根據(jù)運(yùn)動(dòng)系統(tǒng)的
3、運(yùn)動(dòng)規(guī)律設(shè)參,然后運(yùn)用這些參數(shù)列式,再從這些式子中消參,最后討論軌跡的純粹性和完備性,我們稱之為議參其中,最關(guān)鍵的一步是設(shè)參,參設(shè)得不同,整個(gè)思維和運(yùn)算過程不同,參設(shè)得不好,運(yùn)算量增大,甚至根本就算不出來;最畏難一步是消參,經(jīng)常遇到參消不了而越消越復(fù)雜的情況;最易錯(cuò)的一步就是軌跡的純粹性完備性討論如何做到設(shè)參合理、列式簡易、消參順利、議參嚴(yán)密,大家可以從下面的例子中來思考和總結(jié)(二)講例1,設(shè)參基本原則請(qǐng)看屏幕(投影,讀題)例1 矩形ABCD中,AB=2a,BC=b,ab,E、F分別是AB、CD的中點(diǎn),平行于EC的直線l分別交線段EF、FC于M、N兩點(diǎn),求直線AM與BN交點(diǎn)P的軌跡(圖3-9)
4、首先需要建立坐標(biāo)系,請(qǐng)考慮,建立直角坐標(biāo)系一般應(yīng)選擇什么位置?學(xué)生1答:選擇邊界、中心等特殊位置那么,這一題如何建立坐標(biāo)系?解:以E為原點(diǎn),EB為x軸建立直角坐標(biāo)系各點(diǎn)坐標(biāo)如圖(投影換片,加上坐標(biāo)系與相關(guān)點(diǎn)坐標(biāo))運(yùn)動(dòng)系統(tǒng)中,l主動(dòng),M、N從動(dòng),P隨之 運(yùn)動(dòng),請(qǐng)思考,在這一運(yùn)動(dòng)系統(tǒng)中有幾種設(shè)參方法?學(xué)生2答:(1)l的縱截距c,(2)|OM|=t,(3)|FM|=t為什么可以這樣設(shè)參?一參對(duì)一點(diǎn)P,一P對(duì)一參,參變化P運(yùn)動(dòng),參固定P靜止,一句話:一切可以控制運(yùn)動(dòng)系統(tǒng)的量都可以設(shè)參這就是設(shè)參的基本原則設(shè)|FM|=t,t0,b,P(x,y)學(xué)生3答:不必要,只要找x、y、t間的最簡單式子,從中能消參
5、即可,這是列式的基本要求上面的消參方法,可以視x、y為常數(shù)代入消參,也可以是兩式作用消參參數(shù)t0,b范圍明顯,但由于沒有顯參數(shù)方程,所以不便通過議參來確定x、y的范圍,此時(shí)可根據(jù)運(yùn)動(dòng)系統(tǒng)的運(yùn)動(dòng)全過程,由幾何直觀討論軌跡的純粹性和完備性l過F時(shí),P合于F,lOC時(shí),PB故x0,y0影片,顯示軌跡)(三)講例2,選參的一般依據(jù)上面例1,設(shè)一個(gè)參數(shù)就可以了,并且消參也容易,下面的例2就不是這種情況,請(qǐng)看屏幕(投影,讀題)例2 點(diǎn)A(1,1)、B、C是拋物線y2=x上的動(dòng)點(diǎn),滿足ABAC,作矩形ABPC,求P點(diǎn)的軌跡方程(圖3-10)運(yùn)動(dòng)系統(tǒng)中,表面上看有B、C兩個(gè)動(dòng)點(diǎn),實(shí)際上由于ABAC,所以若B主
6、動(dòng),則C從動(dòng),P隨之運(yùn)動(dòng),故實(shí)際上只有一個(gè)自由變量就可以控制整個(gè)運(yùn)動(dòng)系統(tǒng)請(qǐng)思考,這題有幾種設(shè)參方法?各種設(shè)參通過什么途徑把參數(shù)與動(dòng)點(diǎn)坐標(biāo)連系起來?學(xué)生4答:(2)設(shè)點(diǎn)B坐標(biāo)(t2,t)kABkACCP上述兩種設(shè)參方法中,參數(shù)與動(dòng)點(diǎn)P的關(guān)連都比較遠(yuǎn),課后大家可以計(jì)算一下,實(shí)現(xiàn)這一關(guān)連,計(jì)算很是復(fù)雜那么再考慮,能否再找一種設(shè)參方法,這種設(shè)參方法不局限于一個(gè)參數(shù),但確使參數(shù)與動(dòng)點(diǎn)P間的關(guān)連比較近?學(xué)生5答:解:設(shè)B(t12,t1),C(t22,t2)P(x,y)參數(shù)與P的關(guān)連很近,但參數(shù)多了一個(gè),大家向來怕參數(shù)多,實(shí)際上,t1、t2之間本身有一個(gè)關(guān)系,F(xiàn)(t1,t2)=0,而這一關(guān)系在消參的運(yùn)用上或
7、許無需顯解成t1=f(t2),只需要將F(t1,t2)=0用一下就可以達(dá)到消參目的而前面的兩種設(shè)參方法在消參過程中,實(shí)際上就是把t1、t2的關(guān)系F(t1,t2)=0顯解成t1=f(t2),然后消參時(shí)又恢復(fù)成F(t1,t2)=0的重復(fù)計(jì)算過程這種重復(fù)計(jì)算就是一開始所說的有時(shí)很復(fù)雜,有時(shí)根本就算不出來是否真的如此,算算看: (t1+t2)2=t12+t22+2t1t2, (y+1)2=x+1+2-(y+1)-2即:(y+2)2=x-2想一想看,如果顯解出t1=f(t2)再兩式消t2,將會(huì)出現(xiàn)兩個(gè)關(guān)于t2的二次方程,這就是消參計(jì)算復(fù)雜性的原因,因此在根據(jù)設(shè)參基本原則確定的所有可設(shè)的參數(shù)中,選擇與動(dòng)點(diǎn)
8、坐標(biāo)關(guān)連密切的為參數(shù)這就是選參的一般依據(jù),并且選參不要求唯一,多個(gè)參之間不一定獨(dú)立例1中一個(gè)參數(shù)需二個(gè)式,例2中二個(gè)參數(shù)需三個(gè)式,所以一般來說,n個(gè)參數(shù)需列n+1個(gè)式,而消參時(shí)更要充分運(yùn)用恒等式進(jìn)行整體消參最后來討論純粹性和完備性同例1不一樣,顯然x、y是參數(shù)的顯示數(shù),但是兩個(gè)參數(shù)的函數(shù),且兩個(gè)參數(shù)有關(guān)連,并非獨(dú)立,所以x、y范圍難求而用幾何直觀也比較困難,把兩者結(jié)合起來:示軌跡)由此可知,討論軌跡的純粹性和完備性,可以把幾何直觀與參數(shù)函數(shù)相結(jié)合(四)小結(jié)(已在教學(xué)過程中逐條總結(jié)并板書)參數(shù)法求軌跡方程的步驟:設(shè)參:一切可以控制運(yùn)動(dòng)系統(tǒng)的量都可以設(shè)參(基本原則),從中選擇與動(dòng)點(diǎn)關(guān)連密切的為參數(shù)
9、(一般依據(jù))設(shè)參數(shù)不要求唯一,多個(gè)參數(shù)之間不一定獨(dú)立用參:列式要棄繁就簡,n個(gè)參數(shù)需列n+1個(gè)式消參:視x、y為常數(shù),代人消參,兩式作用消參,整體元消參假含參式(即雖有x、y,但并非動(dòng)點(diǎn)坐標(biāo))不能參與消參議參:幾何直觀與參數(shù)函數(shù)相結(jié)合五、布置作業(yè)1E、F是邊長為2的正方形ABCD的邊AD、BC中點(diǎn),長為的軌跡(圖3-11)解:以EF為x軸,EF中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,則E(-1,0), 即 x2-y2=1據(jù)M點(diǎn)從A到OA中點(diǎn)及角到O的運(yùn)動(dòng)過程,畫圖可知,軌跡為雙2點(diǎn)A(1,1),B、C是圓x2+y2=4上的動(dòng)點(diǎn),且ABAC,求BC中點(diǎn)P的軌跡方程(圖3-12)解:設(shè)B(2cos,2sin)、C(cos,2sin)、P(x,y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大班保育工作計(jì)劃大班保育秋季工作計(jì)劃
- 七年級(jí)下冊(cè)地理教學(xué)工作計(jì)劃
- 大班綜合科教學(xué)計(jì)劃
- 2025外科護(hù)士長2月份工作計(jì)劃
- 2025年度第一學(xué)期綜合教研組工作計(jì)劃
- 中小學(xué)教師職業(yè)道德個(gè)人總結(jié)工作計(jì)劃
- 公司員工銷售培訓(xùn)工作計(jì)劃
- 九年級(jí)英語教學(xué)計(jì)劃范本
- 七年級(jí)上冊(cè)人教版數(shù)學(xué)教學(xué)計(jì)劃從算式到方程
- 《城鎮(zhèn)土地價(jià)格》課件
- 【課件】供應(yīng)商現(xiàn)場(chǎng)與質(zhì)量管理
- 2024年立式碾米機(jī)項(xiàng)目可行性研究報(bào)告
- 統(tǒng)編版語文九年級(jí)上冊(cè)(2024)(含答案)
- 中華人民共和國保守國家秘密法實(shí)施條例培訓(xùn)課件
- 中醫(yī)醫(yī)術(shù)確有專長人員醫(yī)師資格考核申報(bào)資料表
- 智慧醫(yī)學(xué)語言基礎(chǔ)2024a學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 成都錦城學(xué)院《算法分析與設(shè)計(jì)》2022-2023學(xué)年期末試卷
- 可行性報(bào)告編制服務(wù)方案
- 牛頓法在圖像處理中的應(yīng)用
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 英語KET官方樣題Test1- Test 2
評(píng)論
0/150
提交評(píng)論