




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、基本不等式專題知識點:1. (1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2. (1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則 (當(dāng)且僅當(dāng)時取“=”)3.若,則 (當(dāng)且僅當(dāng)時取“=”)若,則 (當(dāng)且僅當(dāng)時取“=”)若,則 (當(dāng)且僅當(dāng)時取“=”)4.若,則 (當(dāng)且僅當(dāng)時取“=”)若,則 (當(dāng)且僅當(dāng)時取“=”)5.若,則(當(dāng)且僅當(dāng)時取“=”)注意:(1) 當(dāng)兩個正數(shù)的積為定植時,可以求它們的和的最小值,當(dāng)兩個正數(shù)的和為定植時,可以求它們的積的最小值,正所謂“積定和最小,和定積最大”(2)求最值的條件“一正,二定,三取等”(3)均值定理在求最值、比較大小、求變量的取值范圍、證明不等式、解
2、決實際問題方面有廣泛的應(yīng)用應(yīng)用一:求最值例:求下列函數(shù)的值域(1)y3x2 (2)yx解:(1)y3x22值域為,+)(2)當(dāng)x0時,yx22;當(dāng)x0時, yx= ( x)2=2值域為(,22,+)解題技巧技巧一:湊項例 已知,求函數(shù)的最大值。 解:因,所以首先要“調(diào)整”符號,又不是常數(shù),所以對要進(jìn)行拆、湊項,當(dāng)且僅當(dāng),即時,上式等號成立,故當(dāng)時,。技巧二:湊系數(shù)例: 當(dāng)時,求的最大值。解析:由知,利用均值不等式求最值,必須和為定值或積為定值,此題為兩個式子積的形式,但其和不是定值。注意到為定值,故只需將湊上一個系數(shù)即可。當(dāng),即x2時取等號 當(dāng)x2時,的最大值為8。變式:設(shè),求函數(shù)的最大值。解
3、:當(dāng)且僅當(dāng)即時等號成立。技巧三: 分離技巧四:換元例:求的值域。解析一:本題看似無法運用均值不等式,不妨將分子配方湊出含有(x1)的項,再將其分離。當(dāng),即時,(當(dāng)且僅當(dāng)x1時取“”號)。解析二:本題看似無法運用均值不等式,可先換元,令1,化簡原式在分離求最值。當(dāng),即時,(當(dāng)2即x1時取“”號)。技巧五:在應(yīng)用最值定理求最值時,若遇等號取不到的情況,結(jié)合函數(shù)的單調(diào)性。例:求函數(shù)的值域。解:令,則因,但解得不在區(qū)間,故等號不成立,考慮單調(diào)性。因為在區(qū)間單調(diào)遞增,所以在其子區(qū)間為單調(diào)遞增函數(shù),故。所以,所求函數(shù)的值域為。技巧六:整體代換多次連用最值定理求最值時,要注意取等號的條件的一致性,否則就會出
4、錯。例:已知,且,求的最小值。錯解:,且, 故 。錯因:解法中兩次連用均值不等式,在等號成立條件是,在等號成立條件是即,取等號的條件的不一致,產(chǎn)生錯誤。因此,在利用均值不等式處理問題時,列出等號成立條件是解題的必要步驟,而且是檢驗轉(zhuǎn)換是否有誤的一種方法。正解:,當(dāng)且僅當(dāng)時,上式等號成立,又,可得時, 。技巧七例:已知x,y為正實數(shù),且x 21,求x的最大值.分析:因條件和結(jié)論分別是二次和一次,故采用公式。同時還應(yīng)化簡中y2前面的系數(shù)為 , xxx·下面將x,分別看成兩個因式:x· 即x·x技巧八:已知a,b為正實數(shù),2ba30,求函數(shù)y的最小值.分析:這是一個二元
5、函數(shù)的最值問題,通常有兩個途徑,一是通過消元,轉(zhuǎn)化為一元函數(shù)問題,再用單調(diào)性或基本不等式求解,對本題來說,這種途徑是可行的;二是直接用基本不等式,對本題來說,因已知條件中既有和的形式,又有積的形式,不能一步到位求出最值,考慮用基本不等式放縮后,再通過解不等式的途徑進(jìn)行。法一:a, ·b由a0得,0b15令t1,1t16,2(t)34t2818 y當(dāng)且僅當(dāng)t4,即b3,a6時,等號成立。法二:由已知得:30a2ba2b2 302令u則u22u300, 5u33,18,y點評:本題考查不等式的應(yīng)用、不等式的解法及運算能力;如何由已知不等式出發(fā)求得的范圍,關(guān)鍵是尋找到之間的關(guān)系,由此想到不等式,這樣將已知條件轉(zhuǎn)換為含的不等式,進(jìn)而解得的范圍.技巧九、取平方例: 求函數(shù)的最大值。解析:注意到與的和為定值。又,所以當(dāng)且僅當(dāng)=,即時取等號。 故。應(yīng)用二:利用均值不等式證明不等式例:已知a、b、c,且。求證:分析:不等式右邊數(shù)字8,使我們聯(lián)想到左邊因式分別使用均值不等式可得三個“2”連乘,又,可由此變形入手。解:a、b、c,。同理,。上述三個不等式兩邊均為正,分別相乘,得。當(dāng)且僅當(dāng)時取等號。應(yīng)用三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025高考生物備考教學(xué)設(shè)計:生物技術(shù)的安全性和倫理問題
- 篷房搭建合同范本
- 13 胡蘿卜先生的長胡子 教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版語文三年級上冊
- Unit 1 Teenage Life Listening and Speaking 教學(xué)設(shè)計 -2024-2025學(xué)年高中英語人教版2019 必修第一冊
- 10《吃飯有講究》第2課時(教學(xué)設(shè)計)-2024-2025學(xué)年統(tǒng)編版道德與法治一年級上冊
- Module 7 Unit 2 I'll be home at seven o'clock. (教學(xué)設(shè)計)-2023-2024學(xué)年外研版(三起)英語五年級下冊
- 11-1《過秦論》(教學(xué)設(shè)計)高二語文同步高效課堂(統(tǒng)編版 選擇性必修中冊)
- 7的乘法口訣(教學(xué)設(shè)計)-2024-2025學(xué)年二年級上冊數(shù)學(xué)人教版
- 軍訓(xùn)結(jié)束匯報表演上新生代表的演講稿
- 公司推廣策劃合同范本
- DeepSeek1天開發(fā)快速入門
- 2025書記員招聘考試題庫及參考答案
- 2024-2025年第二學(xué)期數(shù)學(xué)教研組工作計劃
- 2025輔警招聘公安基礎(chǔ)知識題庫附含參考答案
- GB/T 44927-2024知識管理體系要求
- 2025年環(huán)衛(wèi)工作計劃
- 品質(zhì)巡檢培訓(xùn)課件
- 初驗整改報告格式范文
- 2023青島版數(shù)學(xué)三年級下冊全冊教案
- 建設(shè)工程總承包EPC建設(shè)工程項目管理方案1
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
評論
0/150
提交評論