




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、(G)ARCH 模型在金融數(shù)據(jù)中的 應(yīng)用實驗?zāi)康睦斫庾曰貧w異方差(ARCH模型的概念及建立的必要性和適用的場合。了解(G) ARCK型的各種不同類型,如GARCH-M1型,EGARCH型和TARCH 模型。掌握對(G)ARCH真型的識別、估計及如何運用 Eviews軟件在實證研究 中實現(xiàn)。實驗步驟( 一 ) 滬深股市收益率的波動性研究1. 描述性統(tǒng)計(1) 數(shù)據(jù)選取與導(dǎo)入本實驗選取中國上海證券市場 A股成分指數(shù)上證180和深圳證券市場A股成分指數(shù)深證300作為研究對象。分別從財經(jīng)網(wǎng)站上下載了2010年 5月 4號到 2016年 4月 19號這將近6年的上證180和深證 300的每日收盤價,共
2、1448個。 其中,上證180指數(shù)的日收盤價以下記為sh,深證300指數(shù)的日收盤價以下記為sz。將下載的數(shù)據(jù)導(dǎo)入Eviews。(2) 生成收益率的數(shù)據(jù)列在 Eviews 的命令窗口中輸入“genr rh=log(sh/sh(-1) ”,生成上證180指數(shù)的日收益率序列,記為 rh; 輸入 “ genr rz=log(sz/sz(-1) ”, 生成深證300指數(shù)的日收益率序列,記為rz 。(3) 觀察收益率的描述性統(tǒng)計量利用 Eviews 作出的滬市收益率rh 的描述性統(tǒng)計量如圖1 所示。圖1滬市收益率rh的描述性統(tǒng)計量從上圖可以看出,樣本期內(nèi),滬市收益率的均值為0.00395%,標(biāo)準(zhǔn)差為1.6
3、669%,偏度為-0.668201,左偏峰度為7.316683 ,遠高于正態(tài)分布的峰度值 3, 說明滬市收益率rh具有尖峰和厚尾特征。JB統(tǒng)計量為1231.139,說明在極小水 平下,滬市收益率rh顯著異于正態(tài)分布。利用Eviews作出的深市收益率rz的描述性統(tǒng)計量如圖2所示。Series: RZSample 11446口加erva帥鳴1447MsanD 0001MedanD00105JMaKinmn.典3 弱2Llinirnm-0 0E66S6Sid DevD017526Skewness-0.7B100/KurtosisU.0719557JafC|L.e Bera門口白9慎Protwo ii
4、 hCi(XX)。算圖2深市收益率rz的描述性統(tǒng)計量從上圖可以看出,樣本期內(nèi),深市收益率的均值為0.0128%,標(biāo)準(zhǔn)差為1.7926%,偏度為-0.781007,左偏峰度為6.079557 ,遠高于正態(tài)分布的峰度值 3, 說明深市收益率rz也具有尖峰和厚尾特征。JB統(tǒng)計量為718.8909,說明在極小 水平下,滬市收益率rz也顯著異于正態(tài)分布。而且深市收益率的標(biāo)準(zhǔn)差略大于 滬市,說明深市的波動性更大。2 .平穩(wěn)性檢驗利用Eviews軟件對rh和rz進行平穩(wěn)性檢驗。滬市收益率rh的ADF檢驗結(jié) 果如圖3所示;深市收益率rz的ADF僉驗結(jié)果如圖4所示。Null Hypatnesis: RH has
5、 a unit rootExogerlOjS: ConstantLag Length: 0 i Automatic- based on SC, maxlas=l0)t-StatisticProb *Augmented Dicke/-Fullertest statistic-37.042590.0000Test critical values:1% level5% level 10% level-3 434664-2.363333-2.567773“MacKinnon (11996) one-sided p-valuet.Augrn ente d DickeFu 11 eTe 與t E qu a
6、ti cnDependent Variable; D(RH)Mpthod- I qhM SquarssDate: 05/11fl5 Ume: 20 54Sample (adjusted): 3 144BIncluded observations 144S after adju3tnnent&VariableCoefficientStd. Error 1-StatisticProb-0 9744620 026307-37 D42590.0000C354E-D50.00043&D.080S240935gR-squared0.487244Mean dependent var&
7、.1BE=06Adjusted R-squared0.48 S889S.D. dependent var0 023279S.E. of regression0 016675Akaike info criterion-5.348441Sum squared resid0 401506Schwarz criterion5 341143Log likelihood3S60 923Hannan-Quinn criter.-5345717F-statlstic1372.154Durbin-Wats on stat1 991214Pro bF-stati stlo)0 000000圖3 rh 的ADF檢驗
8、結(jié)果Null H/pothesis: RZ has a unit rootExogenous: ConstantLag Length: 0 (Automatic - based on SIC. msxlag=lO)t-StatisticProb*Augmented Dicke/-Fuller test statistic-55.6856900000Test critical values:1% level5% level10% level-3.434654-2.363333-2.567773*MacKinnon i1 390) one-sided p-value3.AuffrneritedDi
9、ckey-FullerTestEquatiixiDependent Variable' D(RZ)Method' Least SquaresDate: 05/11/16 Time: 20 54Sample (adjusted): 3 1448Included obseivations' 1446 after adjustmentsVariableCoefficientStd. ErrorStatisticProb.RZ(-1) C-0.9359980.0001090.0262570.000471-35.635690.2311740.00000.8172squaredAd
10、justed R-squared S.E. of regression Sum squared resid Log likelihood F-statisticPro o(.F-s1ati stic)0 43623 0 468255 0 01789g Q4fi2578 3766 555 12734690 000000Mean dependent var S.D. dependent var Akaike info criterion Schwarz crilerion Hannan-Quinn enter. Durbin-Watson stal-1.20E-05 0 024545 -52068
11、53 -5 J 99555 -5.204129 1.9&7091圖4 rz 的ADF檢驗結(jié)果從這兩個ADF檢驗結(jié)果可以看出,rh和rz的ADF檢驗值都小于臨界值,說 明滬市收益率和深市收益率都是平穩(wěn)的。3 .均值方程的確定及殘差序列自相關(guān)檢驗通過對收益率的自相關(guān)檢驗,可以發(fā)現(xiàn)滬市的收益率與其滯后 7階存在顯著 的自相關(guān),而深市的收益率也與其滯后7階存在顯著的自相關(guān),因此建立的均值 方程如下:(1) 對收益率做自回歸利用LS普通最小二乘法對rh和rh(-7)做回歸,回歸結(jié)果如圖5所示Dependentsanab回 RHMethod: Least SquaresDate: 05/14; 1
12、S Time: 1734Sample fadjusted): 9 144SIncluded obseR'atiQns: 140 after adjustmentsvariableCoerriaentStd. Error t-StatisticProb.C6.72E-050.。438 Q 1535290 3730RH(-7)0.0476700,0262351 324055Q.0C33R-squared0.0Q231QMean deperdent varb85E4J5Adjusted R-sqijarfld0.001616S Dvar0.016631S.E of regression0.0
13、1661BAra ike info criterion-5.355294Sum squar&d resid0.397107Schwarz criterion-5.347971Log likelihood385A812Hannan-Quinn criter.-5.352560Fstatistic3 329370Durbin-Wats on stat1.945953ProbiF'Statistic0 0632&0圖5收益率rh的回歸結(jié)果忽略常數(shù)項的不顯著,rh的均值方程估計為再又t rz和rz(-7)做回歸,回歸結(jié)果如圖6所示。Dependent'ariable:
14、RZMethod: Least SquaresDate; 05/14/16 Time: 17:37Sample (adjusted): 9 144BIncluded observations: 1440 after adjustmentsVariableCoefficientSt! Error t-StatisticProbCQ.00C1590.0004710 3380320.7349RZ(-7)0.0610250.0262362 3259630.0202R-squared0.003746Mean aepenaemvarQ.D00167Adjusted R-squared0.003Q55S D
15、. dependentvar0.017695S.E. of regressionQ.0T7B&7Akaike info criterion-&210315Sum squared residC45&Q61Schwarz criterion5.202993Log likelihood3753427Haman-Quinn enter巧.2075吃F-slatistic541C1D2Durbin-Watson stat1.875428Pro b(F-statistic0.020159圖6收益率rz的回歸結(jié)果同樣忽略常數(shù)項的不顯著,rz的均值方程估計為(2) 用Ljung-Box
16、 Q統(tǒng)計量對均值方程擬合后的殘差及殘差平方做自相關(guān)檢驗得到rh殘差的自相關(guān)系數(shù)acf和pacf值,如圖7所示Date: 0£/14yiS Time: 17:42Sample 9 1440Included observations: 1440Autocorrelation Partial Correlation AC PAC Q-Stat Prob11 0 027 0 027 1.0430 0 3061112 4037 -0.038 3.0003 02231II1II3 -0.0Q3 刃 006 3 0837 537911n4 0 077 0,075 11416 002211115 0
17、.015 0.010 11,739 0039口II口II6 -0.094 -0 090 24 539 0.0001II1II7 -0.004 0.003 24 615 00011111R 0 053 0 048 23 503 DOQfl11)19 0.037 0,030 31443 000011110 -0.Q25 -0.011 32342 0.0001|11 0.043 0.Q37 35000 0 000111112 0.021 0.007 35 625 0 0001113 0.Q7J 0,062 42.776 0 00011114 ,079 -0.073 51 344 QUO。111115
18、 0.004 0.023 51 894 0 0M圖7 rh 殘差的自相關(guān)系數(shù) acf和pacf值偏自相關(guān)系數(shù)顯示rh殘差不存在顯著的自相關(guān)。再得到rh殘差平方的自相關(guān)系數(shù)acf和pacf值,如圖8所示Date:Time: 1744Sample: 9 indue白0 observations: 1441?Au 忸 5rr 之的Panial Carrelatidi AC PAC Q-Stat ProbI11o.ieo0 ISO46.33S0000I1_l20 23/U 212128u.ouoIn130.2130 152193.620000In114a0 007242400.000I1150 15C
19、0 051275 170000In11600 023297.270000Ii1170 1交0.046323 520.000I1180.100 019339 170.0001iI100or0 01035i 25o.coo1i11100 12E0 060374 930.0001i11110.09-GO1B306.36o.coo1j11120 0920 017399 140.00011:130 1790 119445740.00011114o ooe0.011455 000.0001j1II150.084-0.015469.33,000圖8 rh 殘差平方的自相關(guān)系數(shù) acf和pacf值偏自相關(guān)系數(shù)
20、顯示rh殘差平方存在顯著的自相關(guān)。再做出rz殘差和rz殘差平方的自相關(guān)系數(shù)圖,如圖 9和圖10所示Date: 05/5 Time: 1746Sample: 9 1446Included1440Autocorrelation Pallai Correlation AC PAC Q-Stat Prob111O.OB20.062559610.01 fl12-0.041-0.0457 99550.01Sf30.0150.0218.33470.040J40.0290.0259.53770.04950 0160.015g S3120 077II116-0.042-0.04312.5140.051117-0
21、.0040.00212.5410.0 S4111Q0.0440.0401S.3290.05311g0.0120.00715.5490.07711110-0.064-0.06121,5650.017111111D.OOSo.oi g21.bd80.027111112-0.002-0.01321 &S50.041u1130.0700.07328.8470.0071114-0.047-0.05232.0030.004I111150.0070.02332.0630.006圖9 rz殘差的自相關(guān)系數(shù)acf和pacf值Date: 05/14/16 Time: 17:47Sample: 9 144B
22、Included cbservations: 1440AC PAC ChSlat Prob I I n 1I- I- I 1 1 I- I- 1 I _1 iBl T0 2070.20761.E320.0000 2720.240168760,0000 2380.162260 870,0000 2090 101313g80,0000 2000.082372070.0000 1333.002397 51O.O'QO0 1213.00041388O.O'OO0 1473.053把口 3。O.O'OO0 1250.03747338O.O'QO0.17fiQ.094518
23、36O.O'OO0.146D.054550 170.0000.103&.01G565.570.0000.207D.10E62772O.O'OO0.190D.090680440.00。0.119-3.02270095O.O'OOO1Z1 Ji 1131415Autocorrelation Partial Correlation圖10 rz 殘差平方的自相關(guān)系數(shù) acf和pacf值從圖中可以得到與rh類似的結(jié)論,即rz的殘差不存在顯著的自相關(guān),而殘 差平方存在顯著的自相關(guān)。(3) 對殘差平方做線性圖對rh進行回歸后提取殘差,生成殘差平方序列 resl ;對rz進行回
24、歸后提 取殘差,生成殘差平方序列res2。利用軟件作出resl和res2的線形圖,如圖11 和圖12所示。RIES2.m-i250WC7501000125。圖12 rz 殘差平方線性圖由這兩個圖可以看出,e t2的波動具有明顯的時間可變性和集簇性,比如在 500和1000附近比較小,也就是說適合用 GARCH模型來建模。(4) 對殘差進行ARCH-LM Test對rh做回歸之后的窗口中進行 ARCH-LMTest,選擇一階滯后,得到檢驗結(jié) 果如圖13所示。同樣步驟得到rz的檢驗結(jié)果,如圖14所示。Heteroskeda Elicit/ Test .ARCHF-statistic4S.32412
25、 Prob F(1J437)0 0000Obs*R-squared46.81700 Prob. Chi-Square(1)0.0000Test Equation:Dependem '. anaDie: Kh3iup-2Method: Least SquaresDate: 05/15/1S Time: 09:42Sample fsdjusted): 1& 1443Included ctseR'atons' 1439 afler adjustmentsVariableCoefficient SW. Error t-Statistic Pncb.C0 0002261
26、94E-0511 652620.0000RESIh2(FQ1B03770 0259435 951555。0 0。F?-sqgrM0.8253dMean d叩日ndgnt var0.000276AtijJStedR-squared0 031B61SD dependentvar0.000695SE of regression0.000684Akaike info criterioin-11.73512Sum squared resid0.000673 Schwarz criterion-11 72730Log livelihood3445422Hannan-Quinn criter-11r7323
27、9F-statistic姐32412DurUrbWatson stat2.065934Prob(F-st3t»stic)O.OQOOOO圖 13 rh ARCH-LM TestHeteroskedast city Test: ARCHF-statistic6413170 Prqb. F1r1437)0 0000Obs-squared6147729 Prob. Oi-Square(l)0 0000TestEquatian:Dependentk anaDle: RE3IL '2Metliod- Least SquaresOatK 05/15/16 Time: 09:43Sampl
28、e factjuseti/ 10 1443Included obs日zati口ns: 1439 after adjustmentsVariabisCoeiicierrt Std. Error t-Statistic Prob.C0.0302532 04E 0512.427040.0000RESILZ2I-1)0 2366940 02f8108 008 22 70.0000R-squared0.042722Mean impendent var0.000319Adjusted R-squared0.0420568.D dependentvar0.000722S.E ofreqres&on0
29、,030707 Akaike mfo criterion11 67097Sum squared resid0,0JD717Sctiwaiz criterion-1166364Log likelihood33阻259Hannan-Quinn criter-1166823F-statistic04.1317QDurbinWatson sUt2,0S0575Prob(F-statistic)O.OJOQOO圖 14 rz ARCH-LM TestARCH-LMTest檢驗的原假設(shè)是殘差中一直到第 q階都沒有ARCH®象。在這 里q=1.由檢驗結(jié)果可以看出,rh的F檢驗統(tǒng)計量和LM檢驗統(tǒng)計量
30、都大于臨界值, 因此拒絕原假設(shè),認(rèn)為rh殘差中,ARCHC應(yīng)是顯著的。對于rz來說也是這樣, rz殘差中的ARCHS應(yīng)也顯著。4. GARC凄模型建模(1) GARCH(1,1膜型估計結(jié)果對rh和rz分別進行GARCH(1,1建模。其均值方程形式為其中r表示rh和rz都可以。其條件方差方程為利用軟件對rh進行估計,估計結(jié)果如圖15所示Dependent anable: RHMethod: HL - ARCIH (Marcuardt: - Narrr al distributionDate: 05/15/1B Time: 0959Sample (adjusted): 9 144Sincluded
31、 observatons: 1440 after adjustm&ntsConvergenca achieved arer 10 iterationsPresample an a nee: baclccast parameter = 0.7)GARCH = Ci:3) + C(4fRESlD-1 /2 + C(5)*GARGH11)VariableCo efficientStd. Errorz-StatisticProbC9.57E-0500003760 2554530.7984RH-7)0.0559120.0256002.1772580.0295Variance EquationC3
32、.45E-05B.54E-Q74 0345070.0001RESICMV20.0530780.0067957 8114190.0000GAR CHg)0.9331&20.007601122.77630.0000squared0.002242Mean deperxlent var6 36E-05Adjusted R-squared0.001548S . dependent var0.01S631& E. of regression0.016616Akaike info criterion5.547177Sum squared re&id口397134Schwarz ent
33、erien-5.523870Log likelihood3998.S&8Hannan-Quinn criter5 540343Duroin-Watson stat1 945433圖15 rh 的GARCH(1 1)模型估計結(jié)果由估計結(jié)果可以看出,估計的模型為止匕外,除常數(shù)項外其他各系數(shù)全部顯著,說明 rh序列具有顯著的波動集簇 性。而且ARCH®和GARCHH系數(shù)之和為0.986,小于1,也符合理論。因此對 rh建立的GARCH0 1)模型是平穩(wěn)的,具條件方差表現(xiàn)出均值回復(fù),即過去的波 動對未來的影響是逐漸衰減的。再又t rz進行建模,估計結(jié)果如圖16所示Dependent
34、. anable R2Method: ML - ARCH (Marquardt; - Normal distributionDate: 05715/16 Tine: 10:07Sample (adjustedj: 9 1448included otserv'ations: 1440 after adjustmentsConvergence achieved after 15 iterationsPresample xwrinnc。: backcast paramstar - 0.7) GARCH = 03) + C(4)*RESID(-1 Y2 + C(5 尸 GARCH(-1)Var
35、iableCo efficientStd. Error-StatisticProbC0 0002060.0003940 5213740.6018RZ0,0675310 02691125094500.0121Variance EquationC3.20E-0e9.05E-073,5395100.0004RESIW0.0437090.0063917.068637???。00GARCHf-1)0.9397470.007006134 13220.0000R-sqtiare<J0.003099Mean dependent war0.000107Adjusted R-squared0.003006SD
36、 dependent0017795S E of regression0.017656AKaike info criterion-5.414273Sum squaredssi。0.459034Schwarz criterion-5.395966Leg likelihood3903.277Hannan-Quinn enter-5.407439Durbin-Watson stat1.375473圖16 rz 的GARCH(1 1)模型估計結(jié)果估計的模型為對rz的GARCHC1 1)模型的估計結(jié)果分析與rh類似,除常數(shù)項外其他各系 數(shù)全部顯著,說明rz序列具有顯著的波動集簇性。而且ARCHED GAR
37、CH?系數(shù) 之和為0.988,小于1,也符合理論。因此對rz建立的GARCH0 1)模型是平穩(wěn) 的,具條件方差表現(xiàn)出均值回復(fù),即過去的波動對未來的影響是逐漸衰減的。(2) GARCH-M(1,1)古計結(jié)果對rh進行GARCH-M(1,1模型估計,在ARCH-MK中選擇方差,得到rh的 GARCH-M(1,1模型估計結(jié)果如圖17所示。Dependent Variable: RHMethQtr ML - ARCH (Llarquarcif: - Normal distributionDate; 05/15/16 Time 10:13Sample (adjusted): 9 1446Included
38、 observations' 1440 after adjustmentsConvergence achieved after24 iterationsPresample variance backcast (parameter - 0.7)GARCH =C(5)*RE 引口11/2 +C(G*GARCH1)VariableCoefficientStd. Errorz-StatisticProbGARCH0.1965203.07135800S39740.9490C5.53E-050.0007120.077570,938。RH(-7)0D559630.02568321789700.029
39、3Variance EquationC345E'O69.53E-C74 0202610.0001RESID(-ir20.0531140.00684 57.7587450.0000GARCH(-1)0 93311ED.007&05122.70090.0000R-squared0 002154Mean dependent var6 86E-05Adjusted R-squared0 000765S.D. dependentvar0.016631S E of regressionD.0'16625Akaike info criterion-5545791Sum squar&a
40、mp;d resid0 3971B9Schwarz criieriork-5523623Log likelihood3998970Hannan*Quinn enter.-5537591Durbin-Watson stat1 945021圖17 rh 的GARCH-M(1,1)模型估計結(jié)果rh并由估計結(jié)果可以看出,均值方程中的 GARC項的系數(shù)并不顯著,說明 不適合用GARCH-M1型來進行估計。同樣步驟得到rz的GARCH-M(1,1模型估計結(jié)果,如圖18所示De pendent'/alable: RZMethod: ML - ACH (Marquard; - Normal distr
41、ibutionDate: 05/15/16 Time: 10:17Sample (adjusted): 9 1448Included obse-vatians. 1440 artei adjustmentsCon mergence achieved after 2S iterationsPresample variance: backcast (parameter = 0 7)GARCH = C(4: + C(5)*RESIDt-1f2 + C(&rGARCHf-1)VarigbeCoefficientStd. Errorz-StatisticProb,GARCH1,47 292728
42、78J4Q口.5117280 5033C-0,0001300.000752-0173f070,8際R在乃0.0632360.02687425409460.0111Variance EquationC3.25E-069.64E-073 3752820.0007RESIDfra0,04 »2230.001255.908799。口。QQGARCHi-1)0.93903dO.OOT123131 7540.0000R-squaredi0,002493Mean cependentvar0.000167Adjusted R-sqjared0.001105SD dependentvar0.01739
43、5S E. of regression0.017695Akaike info criterion-5.413035Sum squared residQ.45964QSch 即 3Pz criterion-5.391117Log likelihood3903.421Hannan-Quinn crit&r-5.404835Durbin-Wats on stat1.97 1 20Qrz的GARCH-M(1,1模型估計結(jié)果與rh類似,即均值方程中的GARC項的系 數(shù)并不顯著,說明rz不適合用GARCH-彼型來進行估計。(二)股市收益波動非對稱性的研究1. TARCH1型估計結(jié)果在Thresho
44、ld order中填入1,得到rh的TARCH(1 1)模型估計結(jié)果如圖19Variable: RHMethod ML- W?CH (MarguardO - Mcrmai distributionDats 05/15J16 rime 10:23Sample laiimsted) 9 144gIncluded observations: U40 alter adjstmentsCsneroerce acnie(/ed after 15 iterationsPie&aiTDle variance: tacxusttparameter = 0.7)GARCH = Cf3)* C(4rRESI
45、O(-1 Y2 + C5FRESIDM-CfE)*GARCH(-nVariabeCoefficientSt。 Errori-StatisticProb.C9 6OE-Q500003632505815),3321RH-7)0.05688900255952.174362。頰Variance Equationc3 44E-063 53E-074.033967o oaoiRESIDZF20.053183100838g5.3395600.0000RESD(-1)'2RESn(-1)<0:)-0.0002730.009160-D.029764Q.97S3GARCH-10.9332330.00
46、7599122.SJ6S0.0000R-squaied0.002242Mean d&pendent var6.86E-05Adjusted R-squared0.001543S.D. dependent/ar3.01&531SE. of regjessicciO.01GS1BAkaike info crteror5545789SumsquaFed resid0.397134Schwarz ofterf on-5 E23320Log ikelihood3998 96BHannan-Quinn enter.5.537538Djrhn-pVstson stal1.945434圖19
47、rh 的TARCH(1, 1)模型估計結(jié)果估計結(jié)果顯示,RESID(-1)A2*(RESID(-1)<0)的系數(shù)估計值小于0,并且不 顯著,說明在滬市中并不存在收益波動的非對稱性。同樣步驟得到rz的TARCH(1 1)模型估計結(jié)果如圖20所示。Deoendent Variable: RZMethod, ML - ARCH (Uarqjarlt) - Norma distributionDale. 05/15/lfi Time 1020Sample (adjuftecn: 9144fiIndLJded osservstons: 1440 after a<liustTientsConv
48、erger ce adiievei after "6 iterationsPrfisample variant: Dackcastparameter = 0.7iGARCH _ 7(& + C(4yRE3ID+ C(E )*RE3ID-ir2J(RESID(-1 )*0)C(6)*CARCH(-1)VariableCoefficien:Std. Emz-S:atisticPrat).C0 35E 0 =0.0004090.2342D40 8382RZl-7)0 0722810 0263A327386650.0062Variance Equationc433E-CE1.06 4
49、064 1357&00,Q0D0RE.SIDf-120035025O.COB70140254720.0001RESIDM)l2T(RESID(-1)<0)0.0285400.4109232 6129*20.0090GaRCH(-1)£336600.0077341如71超0.0000R-SQuarea0003603叱口 rtependent var0 000167Adjust&d R'Squar?d0.00291 CS D dependentvar0.017695S.E. ofregession0.01786EAkaike info critelon-5.
50、415270Sum squa 印 resid045912E'53&3302Log likslihood30D4.0QEHannan Quinn critor.5 407060Durbin-Watson stat1875496圖20 rz 的TARCH(1, 1)模型估計結(jié)果估計結(jié)果顯示,RESID(-1)A2*(RESID(-1)<0)的系數(shù)估計值大于0,并且顯 著,說明在深市中存在收益波動的非對稱性,即壞消息引起的波動比同等大小的好消息引起的波動要大。2. EGARCH型估計結(jié)果對rh進行EGARCH(1 1)估計,其估計結(jié)果如圖21所示。Dependentanable
51、: RHMethod: LIL - .ACH (Marquardt: - Normal distributionDate: 05/15/1 a Time 10:29Sample fadus:ed;: 9 1448Incl jded observations: 1440 altor adjustmentsConvergence schieved after 17 iterationsPre sample va nance: ba ckcast (param eter = 07)LOG(GARCH) = C(3) + CH)*AESfRESID(-iySQRT(GARCHf-1)n +C(5)*R
52、ESID(-1 咆 SQ RT(GARCH(-1» + C(6rL0G(GARCH(-1)VariableCoeUcientStd. ErrorStatisticPnobC9.3BE-050,000377024674。0 3036RH(-7Qg5P50.02491120675630 0337Variance EquationC-0.1997730.Q3C940-& 4563030 000054)0.1276400.0138209 2359540.0000C(5)-0.0370120.007402-0 947290.3435C(6)0.9373420.003301299 05920.0000R-squared0.002294
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款合同與擔(dān)保合同標(biāo)準(zhǔn)文本
- 農(nóng)業(yè)合伙投資合同標(biāo)準(zhǔn)文本
- 2025年全國電力安全生產(chǎn)知識網(wǎng)絡(luò)競賽題庫及答案(共三套)
- 買賣要約合同范例
- 業(yè)務(wù)合同樣本裝卸搬運
- 分包協(xié)議合同標(biāo)準(zhǔn)文本
- 培訓(xùn)班老生續(xù)班策略與方案
- 農(nóng)村老宅基地變更合同范例
- 妊娠高血壓疾病的護理查房
- 內(nèi)部承包食堂合同樣本
- 2024年四川省成都市“蓉漂”人才薈武候區(qū)招聘23人歷年(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 網(wǎng)課智慧樹知道《運動技能學(xué)習(xí)與控制(牡丹江師范學(xué)院)》章節(jié)測試答案
- 7.1.1條件概率(一)課件高二下學(xué)期數(shù)學(xué)人教A版選擇性
- 第八課 良師相伴 亦師亦友
- 全國高考物理高考題說題比賽一等獎?wù)n件物理說題李煥景
- 華為MA5800配置及調(diào)試手冊
- 巴金名著導(dǎo)讀《寒夜》
- 2024年建筑業(yè)10項新技術(shù)
- 《環(huán)境建設(shè)工程概算、預(yù)算編制辦法》
- 2024年上海外服招聘筆試參考題庫附帶答案詳解
- 改善患者就醫(yī)體驗培訓(xùn)課件
評論
0/150
提交評論