2022《分數(shù)的基本性質》說課稿_第1頁
2022《分數(shù)的基本性質》說課稿_第2頁
2022《分數(shù)的基本性質》說課稿_第3頁
2022《分數(shù)的基本性質》說課稿_第4頁
2022《分數(shù)的基本性質》說課稿_第5頁
已閱讀5頁,還剩69頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2022分數(shù)的基本性質說課稿分數(shù)的基本性質說課稿作為一名教師,時常需要編寫說課稿,借助說課稿可以更好地組織教學活動。寫說課稿需要注意哪些格式呢?以下是我精心整理的分數(shù)的基本性質說課稿,歡迎大家分享。分數(shù)的基本性質說課稿1各位老師,同學:大家上午好!我說課的內(nèi)容是:人教版小學數(shù)學課標教材五年級下冊75頁76頁分數(shù)基本性質。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。一、 教材分析本節(jié)的內(nèi)容屬于概念教學。分數(shù)基本性質在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質

2、的基礎,還是約分、通分的依據(jù)。二、 學情分析學生已經(jīng)清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。三、 教學目標綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:1.理解和掌握分數(shù)的基本性質,并會運用分數(shù)的基本性質把不同的分數(shù)化成分母(或分子)相同而大小不變的分數(shù)。2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。教學重點:

3、理解掌握分數(shù)的基本性質,它是約分、通分的依據(jù)。教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。四、 教法學法根據(jù)本節(jié)課的教學目標,考慮到學生已有的知識、生活經(jīng)驗和認知特點,結合了教材內(nèi)容,本一課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過了觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。五、 教學過程本一節(jié)課的教學過程我分五個部分進行第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問題情

4、境,揭示本節(jié)課要研究的問題。第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數(shù)基本性質。第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。第五部分:梳理知識,反思小結。主要是總結全課。其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”可以細化成為三個環(huán)節(jié):環(huán)節(jié)一:動手操作,進行比較這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數(shù)表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較能力。環(huán)節(jié)二:呈現(xiàn)問題,引導觀察這一環(huán)節(jié)主要是呈現(xiàn)給學生這樣的一個問題,“

5、第一環(huán)節(jié)中的分數(shù)的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的觀察能力。環(huán)節(jié)三:交流匯報,得出規(guī)律這一環(huán)節(jié)主要是學生匯報交流,得出結論。如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數(shù)的基本性質-分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括能力。應該強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。以上是我對分數(shù)基本性質一節(jié)的教學設計意圖,有不當之處,請各位批

6、評指導。分數(shù)的基本性質說課稿2一、說教材分數(shù)的基本性質是九年義務教育六年制小學數(shù)學第十冊第五單元的一個重要內(nèi)容。該教學內(nèi)容是以分數(shù)的意義、分數(shù)與除法的關系以及整數(shù)除法中商不變的規(guī)律這些知識為基礎的。原教材先通過直觀使學生了解1/2、2/4、3/6 4/8四個分數(shù)的分子、分母雖然不同,但是分數(shù)的大小是相等的。接著進一步研究這四個分數(shù)的分子和分母,思考它們是按照什么規(guī)律變化的。最后歸納出分數(shù)的基本性質。這樣安排教學內(nèi)容,學生的主體地位不能得到充分體現(xiàn),不利于培養(yǎng)學生的問題意識。為此,我打算通過"折、畫、想、問、用"五個環(huán)節(jié)對教學內(nèi)容作如下處理。1.畫-讓學生用色筆在長方形紙條上

7、分別涂出它們的一半,并用分數(shù)來表示。2.想-1/2、2/4、3/6 、4/8這些分數(shù)有什么關系?你還能說出和"1/2"大小相等的其他分數(shù)吧?你還能說出和"2/3"大小相等的分數(shù)吧?3.問從"1/2=2/4=3/6=4/8"中,你發(fā)現(xiàn)了什么?4.用-用已學過的"分數(shù)的基本性質"解決有關的數(shù)學問題。這樣安排教學有以下幾點好處:(1)有利于知識的遷移。讓學生通過動手折、涂,再用分數(shù)表示,這樣既幫助學生復習了分數(shù)的意義,又為學習新知識作了準備。(2)能發(fā)揮學生學習的主動性。通過學生找和"1/2"大小相等

8、的分數(shù),以及和"2/3"大小相等的分數(shù),發(fā)揮學生學習的主動性,體現(xiàn)自主學習的精神。(3)提高了學生的學習能力。通過交流,培養(yǎng)學生敢于發(fā)表自己的意見,積極思考問題,積極探究問題,培養(yǎng)學生概括問題的能力和解決問題的能力。二、說教學目標以上各個教學環(huán)節(jié)的設計體現(xiàn)如下幾點教學目標:1.知識技能性目標:讓學生親身經(jīng)歷"分數(shù)基本性質"抽象概括的全過程,正確理解和掌握分數(shù)的基本性質,使學生能運用分數(shù)的基本性質解決有關的數(shù)學問題。2.發(fā)展性目標:培養(yǎng)學生觀察-探索-抽象-概括的能力以及遷移類推能力,滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點,培養(yǎng)學生的數(shù)學意識、問題

9、意識、合作意識以及應用意識。3.創(chuàng)新性目標:讓學生在學習的過程中發(fā)現(xiàn)問題、解決問題,提高學生探索問題的能力和研究問題的能力。三、說教法本節(jié)課起打算采用"創(chuàng)設情境,復習遷移-設疑激思,獲取新知-深化概念,及時反饋"的教學模式進行教學。1.創(chuàng)設情境,復習遷移。為了發(fā)揮學生學習的主動性,使舊知識起到正向遷移的作用,首先創(chuàng)設了動手操作的情境:課開始發(fā)給每位學生四張同樣大小的長方形紙條,讓學生折一折。把第一張紙條對折(也就是把這張紙條平均分成2份),把第二張紙條對折再對折(也就是把紙條平均分成4份),再把第三張3次對折(也就是把紙條平均分成8份)。接著,讓學生畫一畫,用彩筆在等分后的

10、紙條上分別涂出它們的一半。告訴學生,如果把每張紙條都看作單位"1",問學生:你能把涂色的部分用分數(shù)表示嗎? 這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數(shù)的意義,為下面導入新知識作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,激活課堂氣氛,營造良好的學習開端。2.設疑激思,獲取新知。"疑是思之始,學之端"。學,就是學習問題,學怎樣問問題。為此,我在上面教學的基上,引導學生逐一討論以下問題:(1)1/2、2/4、3/6、 4/8這些分數(shù)有什么關系?(學生會說這四個分數(shù)的大小相等。)(2)你能說出與"1/2&qu

11、ot;大小相等的其他分數(shù)嗎?你還能說出與"2/3"大小相等的分數(shù)嗎?(如果學生寫錯或寫不出,待得出分數(shù)基本性質后再寫)(3)從"1/2=2/4=3/6=4/8"中,你發(fā)現(xiàn)了什么?(讓學生分組討論,充分發(fā)表自己的意見,經(jīng)過歸納,最后得出:分數(shù)的分子和分母同時乘以或者除以相同的數(shù),分數(shù)的大小不變。并把這句話顯示出來。)(4)你對上面這句話覺得有什么問題嗎?(學生可能會提出地"相同的數(shù)"中"0"必須除外。如果學生提出不出,就由教師提出問題:相同的數(shù)是不是任何數(shù)都行?為什么?)最后,讓學生完整地概括出分數(shù)的基本性質。(老師

12、揭示課題)這樣教有利于培養(yǎng)學生的問題意識,師生情感交融、和諧,學生積極參與,思維活躍,學習主動,為學生創(chuàng)設一個良好的學習氛圍。3.深化概念,及時反饋。為了加深學生對分數(shù)基本性質的理解,激發(fā)學生的學習興趣,起設計了如下練習:1.下面各式對嗎?為什么?(讓學生用手勢表示對錯)(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/52.在()里填上合適的數(shù)。()/6=()/36=8/12=2/()=()/243.把2/3和10/24化成分線是12而大小不變的分數(shù)。4.把下面大小相等的兩個分數(shù)用線連接起來。4/5 1/6 4/9 4/6 12/163/4 2/3 20/25 6/36 8/

13、18分數(shù)的基本性質說課稿3分數(shù)的基本性質一課是學生在充分認識了分數(shù)的意義和簡單應用的基礎上進行教學的。本課的教學目標是:學生通過自己的觀察、操作等手段,理解并掌握分數(shù)的基本性質,并能根據(jù)分數(shù)的基本性質對分數(shù)進行正確改寫。同時,理解分數(shù)與除法的內(nèi)在聯(lián)系,并能用除法中商不變規(guī)律來解釋分數(shù)的基本性質又是本課教學的一個難點。為了使學生能更好地理解并掌握分數(shù)的基本性質,達到本課的教學目標。同時又能為后面的約分、通分和分數(shù)的加減法等知識的學習打下扎實的基礎。我能根據(jù)教材的實際需要,按照新課程的要求精心設計。在實際教學中,我能努力做到以下幾點:第一、以故事導入,培養(yǎng)學生的學習興趣。在進行備課時,我覺得如果根

14、據(jù)教材的安排來導入,顯得有些平淡,也不容易激發(fā)學生的學習興趣。為此,我設計了一個阿凡提的故事,讓阿凡提給三個兒子分田地,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,這樣一來,學生學習數(shù)學的興趣必然提高,學習的積極性也會空前高漲。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數(shù)的基本性質后,學生就會恍然大捂。原來,三個兒子分得的田地實際上是一樣多的,只不過是平均分的分數(shù)不一樣的,其中表示的份數(shù)也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數(shù)的基本性質來解決實際問題的能力。第二、發(fā)揮集體優(yōu)勢,培養(yǎng)學生的合作能

15、力。為了有效解決教學中“少數(shù)學生爭臺面,多數(shù)學生做陪客”的現(xiàn)象,我在教學中也引入了小組合作學習的形式,提高學生學習的主動性,使學生在獲取數(shù)學知識的同時,形成良好的人際關系,促進學生的全面發(fā)展。為此,在觀察等分數(shù)的變化規(guī)律時,我讓學生充分展開討論。大家你一言我一語,一點一滴,逐步發(fā)現(xiàn)從左往右,分數(shù)的分子分母分別依次乘2、乘4、乘8,而分數(shù)的大小不變的變化規(guī)律。從而慢慢地引出了分數(shù)的基本性質。另外,在故事導入時,我也充分讓學生進行討論,看看三個兒子有沒有吃虧?;钴S了課堂氣氛,提高了學生學習數(shù)學的興趣,取得了不錯的教學效果。第三、精心設計練習題,提高學生解題能力。數(shù)學教學,做題目是其中最重要的一個方

16、面。但傳統(tǒng)教學教師往往進行所謂的題海戰(zhàn)役,讓學生反復做、重復做,這樣不僅做累了學生同時也做怕了學生,消磨了學生學習的積極性。所以如何使學生愿做、樂做,同時又能達到教學目標,提高學生的數(shù)學綜合能力,是擺在我們面前的一個重要課題。為此,在教學分數(shù)的基本性質時,我也精心設計練習題。首先是題型變化豐富。練習中,我除了安排一些基本根據(jù)分數(shù)的基本性質來填空外,我還安排了一些判斷題、口答題、填圖題、并要求學生不改變分數(shù)的大小,把分數(shù)改成分母是30的分數(shù)的題目。題型的豐富不僅提高了學生學習的興趣,也使學生更好地理解和應用分數(shù)的基本性質來解決實際問題的能力。其次是練習難度的層次性。數(shù)學題目經(jīng)常出現(xiàn)有些學生吃不了

17、,同時也有部分學生吃不飽的現(xiàn)象。為此,除了基本的練習題外,我還逐步加深難度,提高學生的思維能力,如:的分子加上10,要使分數(shù)的大小不變,分母應該加上幾?難度的加深,使學生的思維能力、解題能力等都有了明顯提高,真正把培優(yōu)補差工作落到了實處。最新的小學數(shù)學五年級下冊說課稿分數(shù)的基本性質:總之,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節(jié)數(shù)學課都能達到理想的教學效果。分數(shù)的基本性質說課稿4把單位“1”平均分成若干份,表示這樣的一份或其中幾份的數(shù)叫分數(shù)。表示這樣的一份的數(shù)叫分數(shù)單位。分數(shù)的基本性質數(shù)學說課稿,我們來看看。分數(shù)的基本性質1.使學生理解和掌握分數(shù)的基本性質,能

18、應用性質解決一些簡單問題。2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力。3.滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育。教學過程一、談話我們已經(jīng)學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、整數(shù)的互化方法。今天我們繼續(xù)學習分數(shù)的有關知識。二、導入新課例1.用分數(shù)表示下面各圖中的陰影部分,并比較它們的大小。1、分別出示每一個圓,讓學生說出表示陰影部分的分數(shù)。(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?(2)同樣大的圓,陰影部分占圓的幾分之幾?(3)同樣大的圓,陰影部分用分數(shù)表示是多少?2、觀察比較陰影部分的大?。海?)從4 幅圖上看,陰影部分的大小怎么樣

19、?(陰影部分的大小相等。)(2)陰影部分的大小相等,可以用等號連接起來。3、分析、推導出表示陰影部分的分數(shù)的大小也相等:(1)4 幅圖中陰影部分的大小相等。那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?(這4個分數(shù)的大小也相等)(2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來)。4、觀察、分析相等的分數(shù)之間有什么關系?(1)觀察 轉化成 , 的分子、分母發(fā)生了什么變化? ( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍。)(2)觀察 例2.比較 的大小。1、出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù)。2、觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大?。簭臄?shù)軸上可以看

20、出:3、觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律。(1)這三個分數(shù)從形式上看不同,但是它們實質上又都相等。(教師板書: )(2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?三、抽象概括出分數(shù)的基本性質1、觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律? 分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變。2、為什么要零除外?3、教師小結:這就是今天這節(jié)課我們學習的內(nèi)容:分數(shù)的基本性質 (板書:基本性質)4、誰再說一遍什么叫分數(shù)的基本性質?教師板書字母公式:四、應用分數(shù)基本性質解決實際問題1、請同學們回憶,分數(shù)的基本性質和我們以前學過的哪一個知識相類

21、似? (和除法中商不變的性質相類似。)(1)商不變的性質是什么? (除法中,被除數(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變。)(2)應用商不變的性質可以進行除法簡便運算,可以解決小數(shù)除法的運算。 2、分數(shù)基本性質的應用:我們學習分數(shù)的基本性質目的是加深對分數(shù)的認識,更主要的是應用這一知識去解決一些有關分數(shù)的問題。例3 把 和 化成分母是12而大小不變的分數(shù)。板書:教師提問:(1) ?為什么?依據(jù)什么道理?( ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )(2)這個6是怎么想出來的?(這樣想:2?12,2612,也可以看12是2的幾倍:1226,那么分子

22、1也擴大6倍)(3) ?為什么?依據(jù)的什么道理?( ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )(4)這個2是怎么想出來的?(這樣想:24?12,24212.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是1025)五。課堂練習1、把下面各分數(shù)化成分母是60,而大小不變的分數(shù)。2、把下面的分數(shù)化成分子是1,而大小不變的分數(shù)。3、在( )里填上適當?shù)臄?shù)。4、 的分子增加2,要使分數(shù) 的大小不變,分母應該增加幾?你是怎樣想的?5、請同學們想出與 相等的分數(shù)。規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、分母是分

23、子的4倍為:4、8、12、16無數(shù)個。六、課堂總結今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好。七、課后作業(yè)1、指出下面每組中的兩個分數(shù)是相等的還是不相等的。2、在下面的括號里填上適當?shù)臄?shù)。分數(shù)的基本性質(說課稿)理解了分數(shù)的意義,認識真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)和帶分數(shù)、整數(shù)的互化方法之后,就要學習分數(shù)的基本性質。分數(shù)的基本性質在分數(shù)教學中占有十分重要的地位,它是約分、通分的理論依據(jù),而約分、通分又是分數(shù)四則運算的重要基礎。只有理解和掌握分數(shù)的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進

24、行分數(shù)四則運算。因此,分數(shù)的基本性質是分數(shù)的意義和性質這一單元的教學重點之一。掌握分數(shù)與除法的關系,以及除法中被除數(shù)、除數(shù)同時擴大或同時縮小相同的倍數(shù)商不變的規(guī)律,是學好分數(shù)基本性質的基礎。學生在學習和掌握分數(shù)的基本性質過程中,敘述性質內(nèi)容時常常把分子、分母同時乘上或者除以相同的數(shù)(零除外)中的同時零除外丟掉。出現(xiàn)這類問題的原因是:對分數(shù)的基本性質沒有真正的理解;對零為什么要除外的道理也不太清楚。分數(shù)基本性質是建立在:分數(shù)的意義、商不變的性質的基礎上學習的,由于學生進入高年級,抽象思維有了一定的基礎,在培養(yǎng)學生探索規(guī)律、應用一些數(shù)學方法進行遷移類推、思維的嚴密性以及思維的靈活性等方面,都應該進

25、一步予以加強。這種思想方法以及能力的培養(yǎng),對今后研究統(tǒng)計知識及其學生的終身學習都具有非常重要的作用。分數(shù)的基本性質是以分數(shù)大小相等這一概念為基礎展開研究的,由于學生在中年級已經(jīng)對商不變的性質有了較深入的理解,所以在教學實踐中要有意識的加強分數(shù)與除法之間的聯(lián)系,以便把舊知識遷移到新的知識中來。在教學中,采用小組合作學習的辦法,通過給3張紙涂色、折疊、觀察、探索進行規(guī)律性的總結。在進行小組匯報時,教師揭示了知識間的聯(lián)系,鼓勵學生用不同的理解方法、不同角度進行匯報分數(shù)基本性質的可行性,為學生的思維留下了創(chuàng)造空間。在學生總結規(guī)律后,為了加深對分數(shù)的性質的理解,還可以讓同學舉一些符合規(guī)律的例子進行說明。

26、教學實踐中,要注重培養(yǎng)學生揭示知識間的聯(lián)系、探索規(guī)律、總結規(guī)律的能力。分數(shù)的基本性質說課稿5一、教材簡析和教材處理1教材簡析分數(shù)的基本性質是九年義務教育六年制小學數(shù)學課本(西師大版)第十冊第15-16頁的內(nèi)容。在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。2教材處理以前,教師通常把分數(shù)的基本性質看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)

27、律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分。分數(shù)的基本性質可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼

28、點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法。二、教學課件設計意圖場景一:故事引人,揭示課題。有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的三分之一,老二分到了這塊地的六分之二。老三分到了這塊的九分之三。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。讓學生發(fā)表自己的意見,教師出示三塊大小一樣的紙,通過師生折、觀察和驗證,得出結論:三兄弟分得的一樣多。一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。場景二:

29、發(fā)現(xiàn)問題,突出質疑。既然三兄弟分得的一樣多,那么表示它們分得土地的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。3引入新課:下面算式有什么共同的特點?學生回答后它們各是按照什么規(guī)律變化的呢?場景三:比較歸納,揭示規(guī)律。1出示思考題。比較每組分數(shù)的分子和分母:(1)從左往右看,是按照什么規(guī)律變化的?(2)從右往左看,又是按照什么規(guī)律變化的?讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。2集體討論,歸納性質。(1)從左往右看,由1/4到2/8

30、,分子、分母是怎么變化的?引導學生回答出:把1/4的分子、分母都乘以2,就得到2/8。原來把單位“1”平均分成4份,表示這樣的1份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到2/8。(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數(shù)的大小不變。(4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。(5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變

31、。(6)對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?出示的思考題是學生探求新知、獨立思考的指南,教師環(huán)緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。3出示例2:把3/4和15/24化成分母是8而大小不變的分數(shù)。思考:要把3/4和15/24化成分母是8而大小不變的分數(shù),分子怎么不變?變化的依據(jù)是什么?通過舉例,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。如:有助于學生順利地運用分數(shù)與除法的關系,以及整數(shù)除法中商不變性質說明分數(shù)的基本性質,實現(xiàn)

32、新知化歸舊知。場景四:多層練習,鞏固深化。1口答。學生口答后,要求說出是怎樣想的?2判斷對錯,并說明理由。運用反饋片判斷,錯的要求說明與分數(shù)的基本性質中哪幾個字不相符。3在下面()內(nèi)填上合適的數(shù)。練習設計由易到難,由淺入深,既鞏固新知,又發(fā)展思維,其間還自然地滲透思想品德教育。師生對出數(shù)做題,能夠創(chuàng)設民主和諧的學習氣氛。通過舉例,還滲透了函數(shù)思想。分數(shù)的基本性質說課稿6一、說教材分數(shù)的基本性質在分數(shù)教學中占有重要的地位,在小學數(shù)學學習中起著承前啟后的作用。它既以分數(shù)的意義、分數(shù)的大小比較為基礎,又與整數(shù)除法及商不變的性質有著內(nèi)在的聯(lián)系,更分數(shù)的約分、通分的依據(jù),也進一步學習分數(shù)加減法計算、比的

33、基本性質的基礎。因此,分數(shù)的基本性質該單元的教學重點之一。二、說學情學生在三年級上學期已經(jīng)初步認識了分數(shù),以及同分母分數(shù)的大小。在本學期又學習了因數(shù)、倍數(shù)等概念,掌握了2、3、5的倍數(shù)的特征,為學習本單元知識打下了基礎。五年級學生已經(jīng)養(yǎng)成了合作學習的習慣,并且已經(jīng)具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經(jīng)驗,因此能夠在教師的引導下完成“質疑探索釋疑應用”這一完整的學習過程。三、說教學目標依據(jù)新的數(shù)學課程標準,為了更好地體現(xiàn)數(shù)學學習對學生在數(shù)學思考、解決問題以及情感與態(tài)度等方面的要求。根據(jù)本節(jié)課的具體內(nèi)容并結合學生的實際情況,我制定了以下教學目標:知識與技能:讓學生親身經(jīng)歷

34、“分數(shù)基本性質”抽象概括的過程,理解和掌握分數(shù)的基本性質,并能初步運用分數(shù)的基本性質解決簡單的數(shù)學問題。過程與方法:讓學生經(jīng)歷發(fā)現(xiàn)問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養(yǎng)學生觀察-探索-抽象-概括的能力以及合情推理能力,體驗解決問題策略的多樣性。情感與態(tài)度:使學生在分數(shù)基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數(shù)學的嚴謹性,及滲透事物相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。教學重點:理解和掌握分數(shù)的基本性質,運用分數(shù)的基本性質解決實際問題。教學難點:讓學生經(jīng)歷自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,并會應用分數(shù)的基本性質解決相關問題。教學準備:三張同樣大小

35、的長方形紙張,彩色筆四、說教學方法樹立以“以學生發(fā)展為本”、“以學定教”的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。創(chuàng)設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想實驗操作、驗證質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。五、學法有效的數(shù)學學習活動,不

36、能單純模仿與記憶,動手實踐、自主探索與合作交流學生學習數(shù)學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數(shù)化成分母不同但大小相同的分數(shù),并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。六、說教學過程為了全面、準確地引導學生探索發(fā)現(xiàn)分數(shù)的基本性質,實現(xiàn)教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環(huán)節(jié):1、創(chuàng)境設疑: 回顧舊知,引發(fā)思考2、自主探究: 動手實踐,發(fā)現(xiàn)規(guī)律3、交流歸納:揭示規(guī)律,鞏

37、固深化4、分層精練:多層練習,多元評價5、感悟延伸:課堂小結,加深理解第一環(huán)節(jié):創(chuàng)境設疑結合六一兒童節(jié)的到來,創(chuàng)設分蛋糕的情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產(chǎn)生懸念,進一步激發(fā)學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也從學生已有的經(jīng)驗和情感出發(fā),找準新知的最佳切入點,為學生后面的聯(lián)想和猜想巧設“孕伏”。第二環(huán)節(jié):自主探究通過折紙、涂色的動手操作活動,使學生親身經(jīng)歷并獲得非常具體、真切的感知,為探究分子、分母的變化規(guī)律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層

38、評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數(shù)的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發(fā)展學生的實踐能力和創(chuàng)新精神,培養(yǎng)學生的合作意識。第三環(huán)節(jié):交流歸納在這一環(huán)節(jié),教師引導學生在觀察與分析、探索與思考分數(shù)的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生應用分數(shù)和除法的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。這樣的設計就讓學生感受到了數(shù)學知識的內(nèi)在聯(lián)系,同時滲透“事物之間相互聯(lián)系”的辨證唯物主義觀點,培養(yǎng)學生觀察-探索-抽象-

39、概括的能力。第四環(huán)節(jié):分層精練這個環(huán)節(jié)讓學生對分數(shù)的基本性質再一次的體驗,感受,研究,同時也整節(jié)課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發(fā)展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。第五環(huán)節(jié):感悟延伸通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統(tǒng)的回顧和認識,從而進一步培養(yǎng)學生的知識概括能力。總之,本節(jié)課教學堅持了“學

40、生探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數(shù)學和日常生活的緊密聯(lián)系,體驗學習數(shù)學的快樂,培養(yǎng)了創(chuàng)新精神和實踐能力。分數(shù)的基本性質說課稿7一、說教學內(nèi)容的創(chuàng)新處理分數(shù)的基本性質是九年義務教育六年制小學數(shù)學第十冊第四單元的一個重要內(nèi)容。該教學內(nèi)容是以分數(shù)的意義、分數(shù)與除法的關系以及整數(shù)除法中商不變的規(guī)律這些知識為基礎的。原教材先通過直觀使學生了解1/2、2/4、3/6三個分數(shù)的分子、分母雖然不同,但是分數(shù)的大小是相等的。接著進一步研究這三個分數(shù)的分子和分母,思考它們是按照什么規(guī)律變化的。最后歸納出分數(shù)的基本性質。這

41、樣安排教學內(nèi)容,學生的主體地位不能得到充分體現(xiàn),不利于培養(yǎng)學生的問題意識。為此,我打算通過"折、畫、想、問、用"五個環(huán)節(jié)對教學內(nèi)容作如下處理。1.折-用三張同樣大小的長方形紙條分別折出二等分、四等、八等分。2.畫-讓學生用色筆在長方形紙條上分別涂出它們的一半,并用分數(shù)來表示。3.想-1/2、2/4、4/8這些分數(shù)有什么關系?你還能說出和"1/2"大小相等的其他分數(shù)吧?你還能說出和"2/3"大小相等的分數(shù)吧?4.問-ww"1/2=2/4=/4/8"中,你發(fā)現(xiàn)什么?5.用-用已學過的"分數(shù)的基本性質"

42、;解決有關的數(shù)學問題。這樣安排教學有以下幾點好處:(1)有利于知識的遷移。讓學生通過動手折、涂,再用分數(shù)表示,這樣既幫助學生復習了分數(shù)的意義,又為學習新知識作了準備。(2)能發(fā)揮學生學習的主動性。通過學生找和"1/2"大小相等的分數(shù),以及和"2/3"大小相等的分數(shù),發(fā)揮學生學習的主動性,體現(xiàn)自主學習的精神。(3)提高了學生的學習能力。通過交流,培養(yǎng)學生敢于發(fā)表自己的意見,積極思考問題,積極探問題,培養(yǎng)學生概括問題的能力和解決問題的能力。二、說教學模式本節(jié)課起打算采用"創(chuàng)設情境,復習遷移-設疑激思,獲取新知-深化概念,及時反饋"的教學模

43、式進行教學。1.創(chuàng)設情境,復習遷移。為了發(fā)揮學生學習的主動性,使舊知識起到正向遷移的作用,首先創(chuàng)設了動手操作的情境:起發(fā)給每位學生三張同樣大小的長方形紙條,讓學生折一折。把第一張紙條對折(也就是把這張紙條平均分成2份),把第二張紙條對折再對折(也就是把紙條平均分成4份),再把第三張3次對折(也就是把紙條平均分成8份)。接著,讓學生畫一畫,用彩筆在等分后的紙條上分別涂出它們的一半。告訴學生,如果把每張紙條都看作單位"1",問學生:你能把涂色的部分用分數(shù)表示嗎?(電腦顯示三張涂色的紙條,學生分別用分數(shù)1/2、2/4、4/8表示。)這一情境的設置,主要是讓學生在動手操作過程中不僅

44、復習了分數(shù)的意義,為下面導入新知識作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,激活課堂氣氛,營造良好的學習開端。2.設疑激思,獲取新知。"疑是思之始,學之端"。學,就是學習問題,學怎樣問問題。為此,我在上面教學的基上,引導學生逐一討論以下問題:(1)1/2、2/4、4/8這些分數(shù)有什么關系?(學生會說這三個分數(shù)的大小相等。)(2)你能說出與"1/2"大小相等的其他分數(shù)嗎?你還能說出與"2/3"大小相等的分數(shù)嗎?(如果學生寫錯或寫不出,待得出分數(shù)基本性質后再寫)(3)從"1/2=2/4=4/8&qu

45、ot;中,你發(fā)現(xiàn)了什么?(讓學生分組討論,充分發(fā)表自己的意見,經(jīng)過歸納,最后得出:分數(shù)的分子和分母同時乘以或者除以相同的數(shù),分數(shù)的大小不變。并把這句話顯示出來。)(4)你對上面這句話覺得有什么問題嗎?(學生可能會提出地"相同的數(shù)"中"0"必須除外。如果學生提出不出,就由教師提出問題:相同的數(shù)是不是任何數(shù)都行?為什么?)最后,讓學生完整地概括出分數(shù)的基本性質。(老師揭示課題)這樣教有利于培養(yǎng)學生的問題意識,師生情感交融、和諧,學生積極參與,思維活躍,學習主動,為學生創(chuàng)設一個良好的學習氛圍。3.深化概念,及時反饋。為了加深學生對分數(shù)基本性質的理解,激發(fā)學生的

46、學習興趣,起設計了如下練習:1.下面各式對嗎?為什么?(讓學生用手勢表示對錯)(1)3/4=6/8(2)3/8=12/2(3)3/10=1/52.在()里填上合適的數(shù)。()/6=()/36=8/12=2/()=()/243.把2/3和10/24化成分線是12而大小不變的分數(shù)。4.把下面大小相等的兩個分數(shù)用線連接起來。4/51/64/94/612/163/42/320/256/368/18三、說教學目標以上各個教學環(huán)節(jié)的設計體現(xiàn)如下幾點教學目標:1.知識技能性目標:讓學生親身經(jīng)歷"分數(shù)基本性質"抽象概括的全過程,正確理解和掌握分數(shù)的基本性質,使學生能運用分數(shù)的基本性質解決有關

47、的數(shù)學問題。2.發(fā)展性目標:培養(yǎng)學生觀察-探索-抽象-概括的能力以及遷移類推能力,滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點,培養(yǎng)學生的數(shù)學意識、問題意識、合作意識以及應用意識。3.創(chuàng)新性目標:讓學生在學習的過程中發(fā)現(xiàn)問題、解決問題,提高學生探索問題的能力和研究問題的能力。分數(shù)的基本性質說課稿8今天我向大家介紹的是數(shù)學六年級新教材第一章“分數(shù)”中的第二課時“分數(shù)的基本性質”。在本堂課的教學設計中,試圖突出以下兩個特點:(1)逐步引導學生實現(xiàn)學習方式的轉變:由學生習慣于課堂上聽教師講授為主的學習方式,轉變?yōu)閷W生自主學習探究的學習方式。教師為學生提供一個發(fā)展的空間,引導學生自己通過動手操作、觀

48、察猜測、說理驗證等學習環(huán)節(jié),運用自主探索、合作交流等學習方式,去探索,去發(fā)現(xiàn),去體驗,教師作為指導者給予啟發(fā)、點撥。希望通過這樣的設計,能逐步引導學生形成并且正在逐步形成積極思考、自主探索、相互合作、嚴謹求實的品質。(2)強調知識發(fā)生的過程,加強數(shù)學思想方法的滲透:由學生熟悉的給定理、做練習的數(shù)學課模式,轉變?yōu)橥怀鲋R發(fā)生過程,強調數(shù)學思想方法的數(shù)學學習過程。通過給學生設置一個具體的情境問題,激起學生的求知欲望,教師引導學生探索發(fā)現(xiàn)其中的數(shù)學規(guī)律,并用已經(jīng)學過的知識和方法去嘗試說理驗證。通過這樣的數(shù)學學習過程,學生能親身體驗科學研究的一般過程,并從中體會科學探索的嚴謹品質,同時在要求學生說理驗

49、證的過程中可以啟發(fā)學生建立新舊知識之間的聯(lián)系,實現(xiàn)知識點的增長和遷移的特點。在前一年我曾執(zhí)教過六年級數(shù)學,通過這次的備課,我發(fā)現(xiàn):在“分數(shù)的基本性質”這一課的教學安排中,新老教材對知識的發(fā)生和形成過程的處理方法有較大的區(qū)別。據(jù)我個人的觀點,老教材在引入時有針對性的復習分數(shù)與除法的關系和除法中商不變的性質,之后通過類比來實現(xiàn)知識點的遷移和增長,這樣的設計安排學生能較好的體會到各知識點之間的內(nèi)在聯(lián)系,學習的數(shù)學概念有較強的系統(tǒng)性;新教材則更強調學生通過自身的努力,經(jīng)過動手操作實踐的過程,來獲得親身探究的直觀感受和體驗,之后再設法把感性認識上升到理性思考的高度,這樣的設計安排突出的特點是學生有更多的

50、動手操作機會,能留下強烈的直觀感受,對培養(yǎng)學生逐步形成自主探究的良好的學習方式有很大的幫助。教學目標:在理解分數(shù)意義的基礎上,通過操作、觀察,探索分數(shù)的基本性質,體驗分數(shù)性質的“探究發(fā)現(xiàn)說理檢驗”的學習過程,并會運用分數(shù)的基本性質將一個分數(shù)變化為分母(或分子)不同而大小保持不變的分數(shù)。學會面對新問題時,敢于面對、積極探索、發(fā)現(xiàn)規(guī)律,并能從原有知識中找到理論依據(jù),體會新舊知識間的內(nèi)在聯(lián)系,通過自身的努力,實現(xiàn)知識點的遷移和增長。通過數(shù)學課的學習活動,盡快熟悉新同學,逐步養(yǎng)成認真傾聽同學意見、相互合作、相互交流、積極探索的品質。教學過程:一創(chuàng)設情境,引出問題,引導探索,猜測規(guī)律提出問題:一張涂色的

51、紙,涂色部分占這張紙的3/4。請同學們分別用這樣的紙折成不同等分的圖案,看看你們能發(fā)現(xiàn)什么結論呢?通過教師的引導,學生們可以發(fā)現(xiàn):在這些大小相同、不同等分的紙中,涂色部分分別占紙的3/4、6/8、9/12、12/16,這些分數(shù)的大小是相等的,即:3/4=6/8=9/12=12/16。由分數(shù)3/4的分子、分母分別同乘以2、3、4可得分數(shù)6/8、9/12、12/16。而分數(shù)12/16、9/12、6/8的分子、分母分別同除以4、3、2可得分數(shù)3/4。鼓勵學生大膽猜測。由折紙這樣具體的情境問題來引發(fā)學生的思考,既能激發(fā)學生的學習興趣,學生又能真切的體會到數(shù)學就在我們身邊;安排動手操作的學習環(huán)節(jié),之后通

52、過觀察和找規(guī)律來進行探究性學習,符合六年級學生的認知程度,能讓他們體會到數(shù)學學習的樂趣。折紙這樣的操作雖然看似簡單,其實能反映出很多數(shù)學問題,例如通過折紙可以幫助學生體會圖形的翻折對稱中隱含的圖形特征和邊角的數(shù)量關系。我們應該盡量挖掘類似的簡單有效的方法,讓學生的數(shù)學學習過程手腦并用、輕松有趣。在探索過程中,教師的引導是非常重要的一個的環(huán)節(jié),尤其是如何設問。在此,我就提出幾個設問僅供大家參考。雙色紙上有幾個小長方形?綠色部分占這張紙的幾分之幾?你能將它折成幾個大小相同的小長方形?綠色部分分別占了幾分之幾?這些分數(shù)有什么關系?這些分數(shù)之間有什么規(guī)律?在本節(jié)課之前,學生對分數(shù)的意義、分數(shù)與除法的關

53、系已經(jīng)有了初步的認識,在說理過程中,會很自然的運用到分數(shù)和除法的關系,以及除法中商不變的性質。分數(shù)和除法的關系就是前一節(jié)課的學習內(nèi)容,學生印象還比較深刻,較易聯(lián)想起來;除法中商不變的性質可能學生一時之間不容易回想起來,但它和分數(shù)的基本性質相似性極高。安排這樣的說理環(huán)節(jié),可以使學生體會到新舊知識之間的內(nèi)在聯(lián)系,體會到學習的過程就是知識點的遷移和增長過程。三運用性質,鞏固提高例題1試舉出幾個與分數(shù)18/48大小相等的分數(shù)。教材上是“試舉出三個與分數(shù)2/5相等的分數(shù)”。做改動的目的有兩個:一是學生可以從中體會分子、分母不但可以同乘一個數(shù)而且可以同除一個數(shù);二是不明確寫幾個,來引發(fā)學生思考這樣的分數(shù)可

54、以寫幾個?例題2把2/5和8/60分別化成分母是15且與原分數(shù)大小相等的分數(shù)。練習1在括號內(nèi)填上適當?shù)臄?shù),使等式成立:(1)9/15=3×()/5×()(2)2×()/9×()=8/()(3)5×()/2×()=()/14(4)15÷()/20÷()=()/4 2試各寫出三個與下列分數(shù)分母不同而大小相等的分數(shù):(1)1/4(2)5/7(3)4/6(4)10/4 3分別用數(shù)軸上的點表示分數(shù)1/2,2/4,4/8,你能得到什么結論?4把2/3和8/30分別化成分母是15且大小相等的分數(shù)。 5在括號中填上適當?shù)臄?shù):(1)

55、1/4=()/12(2)3/7=()/56(3)6/5=30/()(4)()/10=4/20(5)36/24=()/8(6)7/35=1/()(7)18/()=6/12(8)20/16=5/()四課堂小結,自主評價分數(shù)的基本性質說課稿9各位老師,同學:大家上午好!我說課的內(nèi)容是:人教版小學數(shù)學課標教材五年級下冊75頁76頁分數(shù)基本性質。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。一、 教材分析本節(jié)內(nèi)容屬于概念教學。分數(shù)基本性質在小學數(shù)學的學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計

56、算、比的基本性質的基礎,還是約分、通分的依據(jù)。二、 學情分析學生已經(jīng)清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。三、 教學目標綜合分析課程標準要求及學生實際,我確定本節(jié)的教學目標如下:1.理解和掌握分數(shù)的基本性質,并會運用分數(shù)的基本性質把不同的分數(shù)化成分母(或分子)相同而大小不變的分數(shù)。2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。教學重點:理解掌握分數(shù)的基本性質,它是約分、通分的依據(jù)。教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。四、 教法學法根據(jù)本節(jié)課的教學目標,考慮到學生已有的知識、生活經(jīng)驗和認知特點,結合教材內(nèi)容,本課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論