



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、利用MATLAB中g(shù)atool快速實現(xiàn)訓練神經(jīng)網(wǎng)絡的遺傳算法程序Deng Da-PengGenetic Algorithm,as an famous intelligent algorithm based on evolutionary thoughts, has been widely used to weights training and parameters optimization of neural networks. Essentially, GA is a global stochastic searching algorithm, which approximating gl
2、obal minima through Selection、Crossover and Mutation operators. It is difficult for many researchers to utilize advanced programming languages to implement GA. Actually, MATLAB provide us a very good graphic user interface of GA, named gatool, in GADS toolbox.Below contents illustrate how to use thi
3、s GUI tool to implement combination of GA and NN. In this case, I construct a feed forward network, which topological structure is 5-3-1, transfer functions are tansig and purelin for hidden and output layer, respectively. The key step is write a function to calculate fitness of chromosomes in GA po
4、pulation. Below code is implement this fitness calculating function in this case.function netout = netcal(pm) iN=5; hN=3;oN=1; % add your training sets here P= ; T= ; % Pre-processing data sets Pn,minP,maxP,Tn,minT,maxT = premnmx(P,T); net=newff(minmax(Pn),hN,oN,'tansig','purelin');
5、x,y=size(pm); for j=1:hN x2iw(j,:)=pm(1,(j-1)*iN+1):j*iN); end for k=1:oN x2lw(k,:)=pm(1,(iN*hN+1):(iN*hN+hN); end x2b=pm(1,(iN+1)*hN+1):y); x2b1=x2b(1:hN).' x2b2=x2b(hN+1:hN+oN).' net.IW1,1=x2iw; net.LW2,1=x2lw; net.b1=x2b1; net.b2=x2b2; netout=mse(sim(net,Pn)-Tn); % this error function pro
6、vides fitness for chromosomeOK, save this function with a name, i.e., netcal.m. Then, let's start gatool in MATLAB command line. The GUI of gatool is below.click then launchparameters settingclick and see helpenter num of weightsenter fitness functionFill name of fitness calculating function in
7、fitness function textbox, but note that add '' before function name. Calculate numbers of weights of network, in this case is 22. Then, you need set parameters of GA in right. This step need you understand GA. If any question, you can see help.Complete all these steps, click start button and
8、 launch training. When training process is end ,you will see a best chromosome in lower corner of left. This final result is best weight array of NN trained by GA. Change it to weight matrix and transfer to network according to fitness function code, then simulation with working sets and observe net
9、work performance.You can generate a m files through "generate M-file" in "file" menu. In this case, the M-file code is showed below. You may add some code in the end of this function for convenience.OK, it is end. Thanks for your reading and hope for your reviews and comments.bes
10、t chromosomefunction X,FVAL,REASON,OUTPUT,POPULATION,SCORES = untitled% This is an auto generated M file to do optimization with the Genetic Algorithm and% Direct Search Toolbox. Use GAOPTIMSET for default GA options structure. %Fitness functionfitnessFunction = netcal;%Number of Variablesnvars = 22
11、;%Start with default optionsoptions = gaoptimset;%Modify some parametersoptions = gaoptimset(options,'PopInitRange' ,-0.5 ; 0.5 );options = gaoptimset(options,'StallGenLimit' ,100);options = gaoptimset(options,'CrossoverFcn' , crossoverheuristic 1.2 );options = gaoptimset(options,'MutationFcn' , mutationgaussian 1 1 );options = gaoptimset(options,'Display' ,'of
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 結(jié)腸造瘺術(shù)后并發(fā)癥及防治策略2025
- 小升初六年級數(shù)學下冊??家卓贾R點課件《第六單元第3講:因數(shù)與倍數(shù)》人教版
- 低空經(jīng)濟八大應用場景與實踐案例解析方案
- 大數(shù)據(jù)背景下高職院校電子商務專業(yè)課教學創(chuàng)新研究
- 華為體驗店培訓材料:云服務
- 2024年油氣水輸送管材專用料資金籌措計劃書代可行性研究報告
- 山東省菏澤市巨野縣2024-2025學年八年級下學期期中生物試題 (含答案)
- 現(xiàn)場管理試題及答案
- 物理必修一試題及答案
- 黑龍江省佳木斯市富錦市鐵路中學、錦山中學2025屆九年級下學期5月月考歷史試卷(含答案)
- 法律文書寫作能力測試題庫及解答分析
- 2025合作合同范本:兩人合伙協(xié)議書模板
- 外賣騎手勞務合同協(xié)議書
- T/CAMIR 002-2022企業(yè)技術(shù)創(chuàng)新體系建設(shè)、管理與服務要求
- DB31/T 595-2021冷庫單位產(chǎn)品能源消耗指標
- 第五章 SPSS基本統(tǒng)計分析課件
- 2025年計算機Photoshop操作實務的試題及答案
- 2025時事熱點政治題及參考答案(滿分必刷)
- GB/T 23453-2025天然石灰石建筑板材
- 2024-2030全球WiFi 6移動熱點行業(yè)調(diào)研及趨勢分析報告
- 砌磚理論考試題及答案
評論
0/150
提交評論