球與各種幾何體切、接問題專題(一))_第1頁
球與各種幾何體切、接問題專題(一))_第2頁
球與各種幾何體切、接問題專題(一))_第3頁
球與各種幾何體切、接問題專題(一))_第4頁
球與各種幾何體切、接問題專題(一))_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上球與各種幾何體切、接問題近幾年全國(guó)高考命題來看,這部分內(nèi)容以選擇題、填空題為主,大題很少見。首先明確定義1:若一個(gè)多面體的各頂點(diǎn)都在一個(gè)球的球面上,則稱這個(gè)多面體是這個(gè)球的內(nèi)接多面體,這個(gè)球是這個(gè)多面體的外接球。定義2:若一個(gè)多面體的各面都與一個(gè)球的球面相切, 則稱這個(gè)多面體是這個(gè)球的外切多面體,這個(gè)球是這個(gè)多面體的內(nèi)切球.一、球與柱體的切接規(guī)則的柱體,如正方體、長(zhǎng)方體、正棱柱等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.1、 球與正方體(1)正方體的內(nèi)切球,如圖1. 位置關(guān)

2、系:正方體的六個(gè)面都與一個(gè)球都相切,正方體中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正方體的棱長(zhǎng)為,球的半徑為,這時(shí)有. (2)正方體的棱切球,如圖2. 位置關(guān)系:正方體的十二條棱與球面相切,正方體中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正方體的棱長(zhǎng)為,球的半徑為,這時(shí)有.(3)正方體的外接球,如圖3. 位置關(guān)系:正方體的八個(gè)頂點(diǎn)在同一個(gè)球面上;正方體中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正方體的棱長(zhǎng)為,球的半徑為,這時(shí)有.例 1 棱長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)都在球的表面上,分別是棱,的中點(diǎn),則直線被球截得的線段長(zhǎng)為( )A B CD思路分析:由題意推出,球?yàn)檎襟w

3、的外接球.平面截面所得圓面的半徑得知直線被球截得的線段就是球的截面圓的直徑.2、 球與長(zhǎng)方體例2 自半徑為的球面上一點(diǎn),引球的三條兩兩垂直的弦,求的值結(jié)論:長(zhǎng)方體的外接球直徑是長(zhǎng)方體的對(duì)角線例 3(全國(guó)卷I高考題)已知各頂點(diǎn)都在一個(gè)球面上的正四棱柱高為4,體積為16,則這個(gè)球的表面積為( ).A. B. C. D. 思路分析:正四棱柱也是長(zhǎng)方體.由長(zhǎng)方體的體積16及高4可以求出長(zhǎng)方體的底面邊長(zhǎng)為2,可得長(zhǎng)方體的長(zhǎng)、寬、高分別為2,2,4,長(zhǎng)方體內(nèi)接于球,它的體對(duì)角線正好為球的直徑.3、 球與正棱柱(1)結(jié)論1:正棱柱的外接球的球心是上下底面中心的連線的中點(diǎn)(2)結(jié)論2:直三棱柱的外接球的球心是

4、上下底面三角形外心的連線的中點(diǎn)二、 球與錐體的切接規(guī)則的錐體,如正四面體、正棱錐、特殊的一些棱錐等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過球的半徑和棱錐的棱和高產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.1、正四面體與球的切接問題 (1) 正四面體的內(nèi)切球,如圖4.位置關(guān)系:正四面體的四個(gè)面都與一個(gè)球相切,正四面體的中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正四面體的棱長(zhǎng)為,高為;球的半徑為,這時(shí)有; 例4正四面體的棱長(zhǎng)為a,則其內(nèi)切球的半徑為_【解析】如圖正四面體ABCD的中心為O,即內(nèi)切球球心,內(nèi)切球半徑R即為O到正四面體各面的距離AB

5、a, 正四面體的高h(yuǎn)a,又VABCD4VOBCD,()Rha.(2)正四面體的外接球,位置關(guān)系:正四面體的四個(gè)頂點(diǎn)都在一個(gè)球面上,正四面體的中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正四面體的棱長(zhǎng)為,高為;球的半徑為,這時(shí)有;(可用正四面體高減去內(nèi)切球的半徑得到)例5 求棱長(zhǎng)為1的正四面體外接球的半徑。設(shè)SO1是正四面體SABC的高,外接球的球心O在SO1上,設(shè)外接球半徑為R,AO1r,則在ABC中,用解直角三角形知識(shí)得r,從而SO1,在RtAOO1中,由勾股定理得R2(R)2()2,解得R.結(jié)論:正四面體的高線與底面的交點(diǎn)是ABC的中心且其高線通過球心,這是構(gòu)造直角三角形解題的依據(jù)此題關(guān)鍵是確

6、定外接球的球心的位置,突破這一點(diǎn)此問題便迎刃而解,正四面體外接球的半徑是正四面體高的,內(nèi)切球的半徑是正四面體高的.(3) 正四面體的棱切球,位置關(guān)系:正四面體的六條棱與球面相切,正四面體的中心與球心重合; 數(shù)據(jù)關(guān)系:設(shè)正四面體的棱長(zhǎng)為,高為;球的半徑為,這時(shí)有 例6例7設(shè)正四面體中,第一個(gè)球是它的內(nèi)切球,第二個(gè)球是它的外接球,求這兩個(gè)球的表面積之比及體積之比思路分析:此題求解的第一個(gè)關(guān)鍵是搞清兩個(gè)球的半徑與正四面體的關(guān)系,第二個(gè)關(guān)鍵是兩個(gè)球的半徑之間的關(guān)系,依靠體積分割的方法來解決的(4)為什么正四面體外接球和內(nèi)切球心是同一個(gè)點(diǎn)?2.其它棱錐與球的切接問題(1)球

7、與正棱錐的組合,常見的有兩類,一是球?yàn)槿忮F的外接球,此時(shí)三棱錐的各個(gè)頂點(diǎn)在球面上,根據(jù)截面圖的特點(diǎn),可以構(gòu)造直角三角形進(jìn)行求解.二是球?yàn)檎忮F的內(nèi)切球,例如正三棱錐的內(nèi)切球,球與正三棱錐四個(gè)面相切,球心到四個(gè)面的距離相等,都為球半徑這樣求球的半徑可轉(zhuǎn)化為球球心到三棱錐面的距離,故可采用等體積法解決,即四個(gè)小三棱錐的體積和為正三棱錐的體積.(2)球與一些特殊的棱錐進(jìn)行組合,一定要抓住棱錐的幾何性質(zhì),可綜合利用截面法、補(bǔ)形法等進(jìn)行求解.結(jié)論1:正棱錐的外接球的球心在其高上,具體位置可通過計(jì)算找到結(jié)論2:若棱錐的頂點(diǎn)可構(gòu)成共斜邊的直角三角形,則公共斜邊的中點(diǎn)就是其外接球的球心長(zhǎng)方體或正方體的外接球

8、的球心是在其體對(duì)角線的中點(diǎn)處以下是常見的、基本的幾何體補(bǔ)成正方體或長(zhǎng)方體的途徑與方法途徑1:正四面體、三條側(cè)棱兩兩垂直的正三棱錐、四個(gè)面都是是直角三角形的三棱錐都分別可構(gòu)造正方體途徑2:同一個(gè)頂點(diǎn)上的三條棱兩兩垂直的四面體、相對(duì)的棱相等的三棱錐都分別可構(gòu)造長(zhǎng)方體和正方體途徑3:若已知棱錐含有線面垂直關(guān)系,則可將棱錐補(bǔ)成長(zhǎng)方體或正方體途徑4:若三棱錐的三個(gè)側(cè)面兩兩垂直,則可將三棱錐補(bǔ)成長(zhǎng)方體或正方體例8 正三棱錐的高為1,底面邊長(zhǎng)為,正三棱錐內(nèi)有一個(gè)球與其四個(gè)面相切求球的表面積與體積思路分析:此題求解的關(guān)鍵是搞清球的半徑與正三棱錐的高及底面邊長(zhǎng)的關(guān)系,由等體積法可得:,得到例9(福建高考題)若三

9、棱錐的三條側(cè)棱兩兩垂直,且側(cè)棱長(zhǎng)均為,則其外接球的表面積是 .思路分析:此題用一般解法,需要作出棱錐的高,然后再設(shè)出球心,利用直角三角形計(jì)算球的半徑.而作為填空題,我們更想使用較為便捷的方法.三條側(cè)棱兩兩垂直,使我們很快聯(lián)想到長(zhǎng)方體的一個(gè)角,馬上構(gòu)造長(zhǎng)方體,由側(cè)棱長(zhǎng)均相等,所以可構(gòu)造正方體模型.點(diǎn)評(píng):此題突出構(gòu)造法的使用,以及滲透利用分割補(bǔ)形的方法解決立體幾何中計(jì)算問題,這是解決幾何體與球切接問題常用的方法例10【2012年新課標(biāo)高考卷】已知三棱錐的所有頂點(diǎn)都在球的球面上,是邊長(zhǎng)為1的正三角形,是球的直徑,且;則此棱錐的體積為( )A. B. C. D. 思路分析:的外接圓是球面的一個(gè)小圓,由

10、已知可得其半徑,從而得到點(diǎn)到面的距離.由為球的直徑點(diǎn)到面的距離即可求得棱錐的體積.練習(xí):3、由性質(zhì)確定球心利用球心O與截面圓圓心O1的連線垂直于截面圓及球心O與弦中點(diǎn)的連線垂直于弦的性質(zhì),確定球心4、內(nèi)切球問題若一個(gè)多面體的各面都與一個(gè)球的球面相切, 則稱這個(gè)多面體是這個(gè)球的外切多面體,這個(gè)球是這個(gè)多面體的內(nèi)切球。1、內(nèi)切球球心到多面體各面的距離均相等,外接球球心到多面體各頂點(diǎn)的距離均相等。2、正多面體的內(nèi)切球和外接球的球心重合。3、正棱錐的內(nèi)切球和外接球球心都在高線上,但不重合。4、基本方法:構(gòu)造三角形利用相似比和勾股定理。5、體積分割是求內(nèi)切球半徑的通用做法。三、 球與球相切問題對(duì)于球與球

11、的相切組合成復(fù)雜的幾何體問題,要根據(jù)豐富的空間想象力,通過準(zhǔn)確確定各個(gè)小球的球心的位置,或者巧借截面圖等方法,將空間問題轉(zhuǎn)化平面問題求解.例11 已知有半徑分別為2、3的球各兩個(gè),且這四個(gè)球彼此相外切,現(xiàn)有一個(gè)球與此四個(gè)球都相外切,則此球的半徑為 .思路分析:結(jié)合圖形,分析四個(gè)球的球心A、B、C、D的位置,知AD=AC=BD=BC=5,AB=6,CD=4.設(shè)AB中點(diǎn)為E、CD中點(diǎn)為F,連結(jié)EF.在ABF中可得,在EBF中可得.由于對(duì)稱性可得第五個(gè)球的球心O在EF上,連結(jié)OA、OD.設(shè)第五個(gè)球的半徑為r,根據(jù)OE+OF=EF建立的方程.例12把四個(gè)半徑都是1的球中的三個(gè)放在桌面上,使它兩兩外切,

12、然后在它們上面放上第四個(gè)球,使它與前三個(gè)都相切,求第四個(gè)球的最高點(diǎn)與桌面的距離思路分析:關(guān)鍵在于能根據(jù)要求構(gòu)造出相應(yīng)的幾何體,由于四個(gè)球半徑相等,故四個(gè)球一定組成正四面體的四個(gè)頂點(diǎn)且正四面體的棱長(zhǎng)為兩球半徑之和2四、球與幾何體的各條棱相切問題球與幾何體的各條棱相切問題,關(guān)鍵要抓住棱與球相切的幾何性質(zhì),達(dá)到明確球心的位置為目的,然后通過構(gòu)造直角三角形進(jìn)行轉(zhuǎn)換和求解.如與正四面體各棱都相切的球的半徑為相對(duì)棱的一半:.例13 把一個(gè)皮球放入如圖10所示的由8根長(zhǎng)均為20 cm的鐵絲接成的四棱錐形骨架內(nèi),使皮球的表面與8根鐵絲都有接觸點(diǎn),則皮球的半徑為( )Al0cm B10 cmC10cm D30c

13、m思路分析:根據(jù)題意球心O在圖中AP上,過O作BP的垂線ON垂足為N,ON=R,OM=R,由各個(gè)棱都為20,得到AM=10,BP=20,BM=10,AB=,設(shè),在BPM中,由,得.在PAM中, 由,得.在ABP中得, ,在ONP中得, ,從而,.在OAM中, 由,建立方程即可得解.五、 球與旋轉(zhuǎn)體切接問題首先畫出球及其它旋轉(zhuǎn)體的公共軸截面,然后尋找?guī)缀误w與幾何體幾何元素之間的關(guān)系例14 求球與它的外切圓柱、外切等邊圓錐的體積之比思路分析:首先畫出球及它的外切圓柱、等邊圓錐,它們公共的軸截面,然后尋找?guī)缀误w與幾何體之間元素的關(guān)系例15 在棱長(zhǎng)為1的正方體內(nèi)有兩個(gè)球相外切且又分別與正方體內(nèi)切(1)求兩球半徑之和;(2)球的半徑為多少時(shí),兩球體積之和最小思路分析:此題的關(guān)鍵在于作截面,一個(gè)球在正方體內(nèi),學(xué)生一般知道作對(duì)角面,而兩個(gè)球的球心連線也應(yīng)在正方體的體對(duì)角線上,故仍需作正方體的對(duì)角面,得如圖的截面圖,在圖中,觀察與和棱長(zhǎng)間的關(guān)系即可綜合上面的五種類型,解決與球的外切問題主要是指球外切多面體與旋轉(zhuǎn)體,解答時(shí)首先要找準(zhǔn)切點(diǎn),通過作截面來解決.如果外切的是多面體,則作截面時(shí)主要抓住多面體過球心的對(duì)角面來

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論