




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第九節(jié)第九節(jié)一、四則運(yùn)算的連續(xù)性一、四則運(yùn)算的連續(xù)性 二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性四、小四、小 結(jié)結(jié)三、初等函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性 2/11.)0)()()(),()(),()(,)(),(000處處也也連連續(xù)續(xù)在在點(diǎn)點(diǎn)則則處處連連續(xù)續(xù)在在點(diǎn)點(diǎn)若若函函數(shù)數(shù)xxgxgxfxgxfxgxfxxgxf 一、四則運(yùn)算的連續(xù)性一、四則運(yùn)算的連續(xù)性定理定理1 1例如例如,),(cos,sin內(nèi)內(nèi)連連續(xù)續(xù)在在 xx.csc,sec,cot,tan在在其其定定義義區(qū)區(qū)間間內(nèi)內(nèi)連連續(xù)續(xù)故故xxxx3/11二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性定理定理2 2
2、 嚴(yán)格單調(diào)的連續(xù)函數(shù)必有嚴(yán)格單調(diào)的連嚴(yán)格單調(diào)的連續(xù)函數(shù)必有嚴(yán)格單調(diào)的連續(xù)反函數(shù)續(xù)反函數(shù). .例如例如,2,2sin上單調(diào)增加且連續(xù)上單調(diào)增加且連續(xù)在在 xy. 1 , 1arcsin上也是單調(diào)增加且連續(xù)上也是單調(diào)增加且連續(xù)在在故故 xy;1 , 1arccos上上單單調(diào)調(diào)減減少少且且連連續(xù)續(xù)在在同同理理 xy.,cot,arctan)上單調(diào)且連續(xù))上單調(diào)且連續(xù)在(在( xarcyxy反三角函數(shù)在其定義域內(nèi)皆連續(xù)反三角函數(shù)在其定義域內(nèi)皆連續(xù).4/11).(lim)()(lim,)(,)(lim000 xfafxfaufaxxxxxxx 則則有有連連續(xù)續(xù)在在點(diǎn)點(diǎn)函函數(shù)數(shù)若若定理定理3 3意義意義1
3、.極限符號可以與函數(shù)符號互換極限符號可以與函數(shù)符號互換;.)(. 2的的理理論論依依據(jù)據(jù)變變量量代代換換xu 例例1 1.)1ln(lim0 xxx 求求. 1 xxx10)1ln(lim 原原式式)1(limln10 xxx eln 解解5/11例例2 2.1lim0 xexx 求求. 1 )1ln(lim0yyy 原原式式解:解:,1yex 令令),1ln(yx 則則. 0,0yx時時當(dāng)當(dāng)yyy10)1ln(1lim 同理可得同理可得.ln1lim0axaxx 6/11.)(,)(,)(,)(00000也連續(xù)也連續(xù)在點(diǎn)在點(diǎn)則復(fù)合函數(shù)則復(fù)合函數(shù)連續(xù)連續(xù)在點(diǎn)在點(diǎn)而函數(shù)而函數(shù)且且連續(xù)連續(xù)在點(diǎn)在點(diǎn)
4、設(shè)函數(shù)設(shè)函數(shù)xxxfyuuufyuxxxxu 定理定理4 4注意注意定理定理4是定理是定理3的特殊情況的特殊情況.例如例如,), 0()0,(1內(nèi)內(nèi)連連續(xù)續(xù)在在 xu,),(sin內(nèi)內(nèi)連連續(xù)續(xù)在在 uy.), 0()0,(1sin內(nèi)內(nèi)連連續(xù)續(xù)在在 xy7/11三、初等函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性三角函數(shù)及反三角函數(shù)在它們的定義域內(nèi)是三角函數(shù)及反三角函數(shù)在它們的定義域內(nèi)是連續(xù)的連續(xù)的.)1, 0( aaayx指指數(shù)數(shù)函函數(shù)數(shù);),(內(nèi)單調(diào)且連續(xù)內(nèi)單調(diào)且連續(xù)在在)1, 0(log aaxya對對數(shù)數(shù)函函數(shù)數(shù);), 0(內(nèi)單調(diào)且連續(xù)內(nèi)單調(diào)且連續(xù)在在8/11定理定理5 5 基本初等函數(shù)在基本初等函
5、數(shù)在定義域內(nèi)定義域內(nèi)是連續(xù)的是連續(xù)的. . xy xaalog ,uay .log xua ,), 0(內(nèi)內(nèi)連連續(xù)續(xù)在在 ,不不同同值值討討論論 (均在其定義域內(nèi)連續(xù)均在其定義域內(nèi)連續(xù) )定理定理6 6 一切初等函數(shù)在其一切初等函數(shù)在其定義區(qū)間定義區(qū)間內(nèi)都是連內(nèi)都是連續(xù)的續(xù)的. .定義區(qū)間定義區(qū)間是指包含在定義域內(nèi)的區(qū)間是指包含在定義域內(nèi)的區(qū)間. .9/111. 初等函數(shù)僅在其定義區(qū)間內(nèi)連續(xù)初等函數(shù)僅在其定義區(qū)間內(nèi)連續(xù), 在在其定義域內(nèi)不一定連續(xù)其定義域內(nèi)不一定連續(xù);例如例如, 1cos xy,4,2, 0: xD這些孤立點(diǎn)的鄰域內(nèi)沒有定義這些孤立點(diǎn)的鄰域內(nèi)沒有定義.,)1(32 xxy, 1
6、, 0: xxD及及在在0點(diǎn)的鄰域內(nèi)沒有定義點(diǎn)的鄰域內(nèi)沒有定義.), 1上連續(xù)上連續(xù)函數(shù)在區(qū)間函數(shù)在區(qū)間注意注意注意注意2. 初等函數(shù)求極限的方法初等函數(shù)求極限的方法代入法代入法.10/11例例3 3. 1sinlim1 xxe求求1sin1 e原式原式. 1sin e例例4 4.11lim20 xxx 求求解解解解)11()11)(11(lim2220 xxxxx原原式式11lim20 xxx20 . 0 )()()(lim000定定義義區(qū)區(qū)間間 xxfxfxx11/11四、小結(jié)四、小結(jié)連續(xù)函數(shù)的和差積商的連續(xù)性連續(xù)函數(shù)的和差積商的連續(xù)性.復(fù)合函數(shù)的連續(xù)性復(fù)合函數(shù)的連續(xù)性.初等函數(shù)的連續(xù)性初
7、等函數(shù)的連續(xù)性.定義區(qū)間與定義域的區(qū)別定義區(qū)間與定義域的區(qū)別;求極限的又一種方法求極限的又一種方法.兩個定理兩個定理; 兩點(diǎn)意義兩點(diǎn)意義.反函數(shù)的連續(xù)性反函數(shù)的連續(xù)性.用時用時1課時課時業(yè)業(yè)作作; 6);5)(2(4);7)(5(370 P12/11思考題思考題 設(shè)設(shè)xxfsgn)( ,21)(xxg ,試試研研究究復(fù)復(fù)合合函函數(shù)數(shù))(xgf與與)(xfg的的連連續(xù)續(xù)性性.13/11思考題解答思考題解答21)(xxg )1sgn()(2xxgf 1 2sgn1)(xxfg 0, 10, 2xx在在),( 上上處處處處連連續(xù)續(xù))(xgf在在)0 ,( ), 0( 上上處處處處連連續(xù)續(xù))(xfg0
8、 x是它的可去間斷點(diǎn)是它的可去間斷點(diǎn) 0, 10, 00, 1)(xxxxf14/11一一、 填填空空題題:1 1、 43lim20 xxx_ _ _ _ _ _ _ _ _ _ _ _ _. .2 2、 xxx11lim0_ _ _ _ _ _ _ _ _ _ _ _ _. .3 3、 )2cos2ln(lim6xx _ _ _ _ _ _ _ _ _ _ _ _ _. .4 4、 xxx24tancos22lim _ _ _ _ _ _ _ _ _ _ _ _ _. .5 5、 tett1lim2_ _ _ _ _ _ _ _ _ _ _ _ _. . 6 6、設(shè)設(shè),0,0,)( xxax
9、exfx 當(dāng)當(dāng) a_ _ _ _ _ _時時,)(xf在在 ),( 上上連連續(xù)續(xù) . .練練 習(xí)習(xí) 題題15/117 7、 函數(shù)函數(shù)61)(24 xxxxxf的連續(xù)區(qū)間為的連續(xù)區(qū)間為 _. _.8 8、 設(shè)設(shè) 時時當(dāng)當(dāng)時時當(dāng)當(dāng)1,11,2cos)(xxxxxf確定確定 )(lim21xfx_; ; )(lim1xfx_._.二、二、 計(jì)算下列各極限:計(jì)算下列各極限:1 1、axaxax sinsinlim; 2 2、xxxcot20)tan31(lim ;3 3、1)1232(lim xxxx;16/11三、三、 設(shè)設(shè) 0),ln(0,10,)(22xxxbxxxaxf已知已知)(xf在在 0
10、 x處連續(xù),試確處連續(xù),試確 定定a和和b的值的值. .四、四、 設(shè)函數(shù)設(shè)函數(shù))(xf在在0 x處連續(xù),且處連續(xù),且0)0( f, ,已知已知)()(xfxg ,試證函數(shù),試證函數(shù))(xg在在0 x處也連續(xù)處也連續(xù). .17/11一一、1 1、2 2; 2 2、21; 3 3、0 0; 4 4、0 0;5 5、)11(212 e; 6 6、1 1;7 7、), 2(),2 , 3(),3,( ;8 8、22, ,0 0, ,不不存存在在. .二二、1 1、acos; 2 2、1 1; 3 3;21e. .三三、eba , 1. .練習(xí)題答案練習(xí)題答案18/11).(lim)()(lim,)(,)(lim000 xfafxfaufaxxxxxxx 則則有有連連續(xù)續(xù)在在點(diǎn)點(diǎn)函函數(shù)數(shù)若若定理定理3 3證證,)(連連續(xù)續(xù)在在點(diǎn)點(diǎn)auuf .)()(, 0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校音樂班管理制度
- 學(xué)生接送點(diǎn)管理制度
- 安全確認(rèn)制管理制度
- 安服部安全管理制度
- 安置點(diǎn)日常管理制度
- 宗教活動所管理制度
- 實(shí)訓(xùn)室各種管理制度
- 實(shí)驗(yàn)室采購管理制度
- 客房服務(wù)間管理制度
- 室內(nèi)潛水館管理制度
- 2024年6月英語四級考試真題及答案(第1套)
- 2024中國糖尿病合并慢性腎臟病臨床管理共識解讀
- 糖尿病的中醫(yī)科普
- 寺院承包合同范例
- JJF(蘇) 50-2024 水泥混凝土稠度試驗(yàn)儀校準(zhǔn)規(guī)范
- 冷庫建設(shè)項(xiàng)目可行性研究報(bào)告5篇
- 三年級下冊混合計(jì)算題100道及答案
- 口腔護(hù)理保健課件
- 云南省部分學(xué)校2024-2025學(xué)年高三上學(xué)期9月聯(lián)考試題 生物 含答案
- 網(wǎng)絡(luò)傳播概論(第5版)課件 第四章 網(wǎng)絡(luò)傳播的多重策略
- 廣東省2025屆高三第一次調(diào)研考試 化學(xué)試卷(含答案)
評論
0/150
提交評論