




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、數(shù)列復(fù)習(xí)2.1 數(shù)列的表示一、概念1、定義:按一定順序排列的一列數(shù)叫做數(shù)列。注意:“有序性”是數(shù)列的基本特征!注意和集合區(qū)分2、表示:一般我們用符號(hào):表示一個(gè)數(shù)列注意:“”是集合的符號(hào),但不代表數(shù)列就是集合。3、通項(xiàng)公式:用含n的式子表示數(shù)列中的某項(xiàng)。即注意:通項(xiàng)公式是一種特殊的函數(shù)表示形式(離散型); 并不是所有的數(shù)列都能寫出通項(xiàng)公式。4、前n項(xiàng)和公式:用含n的式子表示數(shù)列前n項(xiàng)的和。即注意:前n項(xiàng)和公式同樣是一種特殊的函數(shù)表示形式; 前n項(xiàng)和與通項(xiàng)的關(guān)系: ···········&
2、#183;·················································&
3、#183;······例題1:下列敘述正確的是注意:數(shù)列與集合的區(qū)別。A、數(shù)列1、3、5、7和數(shù)列7、5、3、1是同一個(gè)數(shù)列B、同一個(gè)數(shù)字在數(shù)列中可能重復(fù)出現(xiàn)C、數(shù)列的通項(xiàng)公式是定義域?yàn)檎麛?shù)集的函數(shù)D、數(shù)列的通項(xiàng)公式是惟一的5、遞增數(shù)列和遞減數(shù)列遞增數(shù)列都滿足:或遞減數(shù)列都滿足:或·····················
4、183;··············································例題2:已知數(shù)列是遞增數(shù)列,且,則實(shí)數(shù)的
5、取值范圍是 。·················································
6、;···················2.2 等差數(shù)列一、概念1、如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做 。2、定義法證明數(shù)列是等差數(shù)列若數(shù)列中存在:(d為常數(shù)),則為等差數(shù)列;··············
7、;··················································
8、;····例題1:判斷下列數(shù)列是否等差數(shù)列(1); (2);·········································
9、3;··························二、等差數(shù)列的通項(xiàng)公式1、通項(xiàng)公式:2、推導(dǎo)過程:累加法3、等差中項(xiàng):若a,A,b成等差數(shù)列,則A叫做a與b的等差中項(xiàng),且注意:通項(xiàng)公式中的“”中,知任意三個(gè)可求另一個(gè)。例題2:已知等差數(shù)列:3,7,11,15則:135,是中的項(xiàng)嗎?注意:檢驗(yàn)一個(gè)數(shù)(式)是否數(shù)列中的一項(xiàng),只需把這個(gè)
10、數(shù)(式)代入數(shù)列的通項(xiàng)公式中即可。···············································&
11、#183;····················三、等差數(shù)列的簡單性質(zhì)1、若,則2、下標(biāo)為等差數(shù)列的項(xiàng)仍為等差數(shù)列 3、數(shù)列(為常數(shù))仍為等差數(shù)列4、和均為等差數(shù)列,則也為等差數(shù)列。··················
12、··················································
13、例題1:已知等差數(shù)列中,則的值是 。例題2:等差數(shù)列中,。求數(shù)列的通項(xiàng)公式。注意:利用等差數(shù)列性質(zhì)轉(zhuǎn)換時(shí),不要混淆性質(zhì)。例題3:設(shè)數(shù)列、都是等差數(shù)列,且,則的值是 。例題4:等差數(shù)列中,則 ··································&
14、#183;·································四、判斷一個(gè)數(shù)列是否為等差數(shù)列的方法定義法:等差中項(xiàng):通項(xiàng)法:為n的一次函數(shù);求和法:·········
15、··················································
16、·········例題1:已知數(shù)列滿足,令,求證:數(shù)列是等差數(shù)列例題2:已知a,b,c成等差數(shù)列,求證:也成等差數(shù)列。································
17、3;···································2.3 等差數(shù)列前n項(xiàng)和一、前n項(xiàng)和公式1、公式:2、推導(dǎo):倒序求和(等差專用)3、注意:中,“知三求二”。要根據(jù)已知條件合理選用公式,列方程求解。4、運(yùn)用公式,要注意性質(zhì)“”
18、的運(yùn)用。·················································
19、183;··················例題1:此類題目的中心思想是方程思想。(1)已知等差數(shù)列的前5項(xiàng)和為25,第8項(xiàng)是15,求第21項(xiàng)。(2)等差數(shù)列16,12,18,的前幾項(xiàng)和為72?(3)一個(gè)等差數(shù)列第5項(xiàng)為10,前3項(xiàng)和為3,求和。例題2:已知數(shù)列的前n項(xiàng)和,則數(shù)列的通向公式為注意:活用前n項(xiàng)和通項(xiàng)的關(guān)系。例題3:在等差數(shù)列中,求。······
20、··················································
21、············二、等差數(shù)列的性質(zhì)1、等差數(shù)列中,連續(xù)m項(xiàng)的和仍組成等差數(shù)列,即:仍為等差數(shù)列。2、設(shè)數(shù)列的前n項(xiàng)和的公式為,則為等差數(shù)列的充要條件是。3、等差數(shù)列中,當(dāng)n為奇數(shù)時(shí), ,當(dāng)n為偶數(shù)時(shí), ······················
22、83;·············································例題1:等差數(shù)列的公差,且,求。例題2:已知等差數(shù)列的
23、前n項(xiàng)和為377,項(xiàng)數(shù)n為奇數(shù),且前n項(xiàng)和中奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的比是6:7,求中間項(xiàng)。例題3:等差數(shù)列的前4項(xiàng)和為25,后四項(xiàng)和為63,前n項(xiàng)和為286,求n。變式1:(中難)在等差數(shù)列中,求。例題4:(中難)已知等差數(shù)列的前n項(xiàng)和分別為和,若,求·····························
24、3;······································三、裂項(xiàng)相消法求數(shù)列前n項(xiàng)和例題1:求數(shù)列;········
25、··················································
26、··········2.4 等比數(shù)列一、概念1、如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做 。2、定義法證明數(shù)列是等比數(shù)列若數(shù)列中存在:(q為常數(shù)),則為等比數(shù)列;3、注意:等比數(shù)列中公比,任意一項(xiàng)不能等于0···················
27、183;················································例題1:判斷下面
28、數(shù)列是否等比數(shù)列:(1)(2)在數(shù)列中已知;(3)常數(shù)列(4)在數(shù)列中,其中。···········································
29、83;························二、等比數(shù)列通項(xiàng)公式1、通項(xiàng)公式: 2、推導(dǎo)過程:累乘法3、等差中項(xiàng):若a,G,b成等比數(shù)列,則A叫做a與b的等比中項(xiàng),且注意:通項(xiàng)公式中的“”中,知任意三個(gè)可求另一個(gè)。···········
30、183;·················································
31、183;······例題1:已知等比數(shù)列,若,求。例題2:已知數(shù)列為等比數(shù)列。若,且,求的值例題3:(整體思想的應(yīng)用)若數(shù)列滿足關(guān)系,求數(shù)列的通項(xiàng)公式。································
32、183;···································三、等比數(shù)列的簡單性質(zhì)1、若,則2、下標(biāo)為等比數(shù)列的項(xiàng)也為等比數(shù)列3、數(shù)列(為常數(shù))仍為等比數(shù)列4、和均為等比數(shù)列,則也為等比數(shù)列。5、若為等比數(shù)列,公比為q,則其奇數(shù)項(xiàng)或
33、偶數(shù)項(xiàng)也能組成等比數(shù)列,公比為q2.···············································
34、·····················例題4:在等差數(shù)列中,若,則有等式成立,類比上述性質(zhì),相應(yīng)地,在等比數(shù)列中,若,則有等式 成立。例題5:設(shè)為公比的等比數(shù)列,若和是方程的兩根,則 。四、判斷一個(gè)數(shù)列是否為等比數(shù)列的方法定義法:等比中項(xiàng):通項(xiàng)法: 求和法:··········
35、3;·················································
36、3;·······例題5:數(shù)列的前n項(xiàng)和記為,已知。證明:(1)數(shù)列是等比數(shù)列;(2)例題6:設(shè)數(shù)列的前n項(xiàng)和記為,已知,求證:當(dāng)時(shí),是等比數(shù)列2.5 等比數(shù)列前n項(xiàng)和一、等比數(shù)列前n項(xiàng)和公式1、公式: 2、“知三求二”3、注意求和時(shí),討論“1”4、對(duì)等比數(shù)列前n項(xiàng)和:“”的理解。····················
37、3;···············································例題1:求和·
38、3;·················································
39、3;················二、等比數(shù)列前n項(xiàng)和的性質(zhì)1、連續(xù)m項(xiàng)的和仍為等比數(shù)列2、為等比數(shù)列3、若n為奇數(shù),則奇數(shù)項(xiàng)和偶數(shù)項(xiàng)和×公比;若n為偶數(shù),則偶數(shù)項(xiàng)和奇數(shù)項(xiàng)和×公比·····················&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國成套供水設(shè)備行業(yè)市場分析及競爭形勢與發(fā)展前景預(yù)測研究報(bào)告
- 語言文字應(yīng)用研究發(fā)展計(jì)劃
- 2025-2030中國微晶纖維素市場應(yīng)用需求分析與未來前景展望研究報(bào)告
- 核心力量訓(xùn)練對(duì)水平二學(xué)生體質(zhì)健康影響的實(shí)驗(yàn)研究
- 企業(yè)疫情期間線上團(tuán)隊(duì)建設(shè)活動(dòng)計(jì)劃
- 家居裝修年年度安全隱患排查方案
- 2025-2030中國學(xué)生校服行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030中國大閘蟹行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 蜘蛛600字小學(xué)六年級(jí)作文15篇范文
- 基于深度學(xué)習(xí)的道路裂縫檢測研究
- 2025購銷茶葉合同范本
- 山東濟(jì)南歷年中考作文題與審題指導(dǎo)(2005-2021)
- 職業(yè)技術(shù)學(xué)院2024級(jí)工業(yè)互聯(lián)網(wǎng)技術(shù)專業(yè)人才培養(yǎng)方案
- 锝99mTc替曲膦注射液-藥品臨床應(yīng)用解讀
- 武漢各區(qū)2023-2024學(xué)年九下化學(xué)四調(diào)壓軸題分類匯編-第8題選擇題
- 腦血管造影術(shù)的術(shù)前及術(shù)后護(hù)理
- 外墻涂料施工勞務(wù)合同范本(8篇)
- 成人重癥患者顱內(nèi)壓增高防控護(hù)理專家共識(shí)2024
- 網(wǎng)絡(luò)災(zāi)難與信息安全應(yīng)急
- 音樂人類學(xué)視角-洞察分析
- 2022年湖南省普通高中學(xué)業(yè)水平考試語文試卷及參考答案
評(píng)論
0/150
提交評(píng)論