版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、九年級(上)期中數學試卷題號一一三四總分得分、選擇題(本大題共 12小題,共36.0分)1.二次方程4x2-1=5x的二次項系數、一次項系數、常數項分別為(A. 4, - 1, 5B. 4, - 5, - 1C. 4, 5,-12.在下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(D. 4, - 1, - 5 )3.4.5.6.7.8.9.10.11.“ +值為(D.A. 3.次方程x2-3x=1的兩個實數根為% 3,則B. - 1C.- 3關于拋物線y=x2-4x+4,下列說法錯誤的是(A.開口向上C.對稱軸是直線x=2若關于x的)D. 1B.與x軸只有一個交點D.當x>0時,y隨x的
2、增大而增大.次方程 x2-4x+2m=0有一個根為-1,則另一個根為(A. 5B. - 3下列函數中,-一定是二次函數是(A. y=ax2+bx+cB. y=x(-x+1)拋物線y=-x2+2x-2的頂點坐標為(A. (-1,1)B. (1,-1)如圖,將AABC繞點C順時針旋轉C. - 5)C. y=(x-1)2-x2)C. (-1,-1)90彳導至ij AEDC,若點D. 4D. y=1x2A, D, E在同一條直線上,/ACB=20°,則/ADC的度數是()A. 55B. 60。C. 65°D. 70。D. (1.-3)將拋物線y=-2x2+1向左平移1個單位,再向下
3、平移3個單位長度,所得的拋物線為( )A. y=-2(x-1)2-2C. y=-2(x-1)2+4若二次函數y=x2-4x+m的圖象經過y1、V2、y3的關系是()A. y1<y2<y3 B. y3<y2<y1B. y=-2(x+1)2-2D. y=-2(x+1)2+4A (-1, y1),B (2, y2), C (4, v* 三點,則C. y3<y1<y2某工廠一月份生產機器 100臺,計劃二、三月份共生產機器D. y2<y3<y1240臺,設二、三月份的平均增長率為x,則根據題意列出方程是(A. 100(1+x)2=240C. 100+10
4、0(1+x)+100(1+x)2=240B.D.)100(1+x)+100(1+x)2=240100(1-x)2=240第3頁,共17頁12.已知二次函數y=ax2+bx+c (aw()的圖象如圖所示, 有下列5個結論:abc> 0;bv a+c;4a+2b+c>0; 2c-3bv 0; a+b>n (an+b) (nw),其中正確的結論有()A. 2個B. 3個C.4個1 . 5個、填空題(本大題共 6小題,共18.0分)13.14.15.16.17.18.二次函數y=x2+2x-3的最小值是當k 時,方程kx2+x=2-5x2是關于x的一元二次方程.拋物線y=ax2+bx
5、+c( aw。的對稱軸是直線 x=2,且經過點(5,0),則a-b+c= 若m是方程2x2-3x-1=0的一個根,則6m2-9m+2010的值為 已知二次函數y=x2-4x+k的圖象的頂點在x軸下方,則實數k的取值范圍是 如圖,AD/BC, AB1BC 于點 B, AD=4,將 CD 繞點 D 逆時針旋轉90°至DE,連接AE、CE,若AADE的面積 為 6,則 BC=.三、計算題(本大題共 3小題,共18.0分)19 .已知關于x的一元二次方程 kx2-6x+1=0有兩個不相等的實數根.(1)求實數k的取值范圍;(2)寫出滿足條件的k的最大整數值,并求此時方程的根.20 .如圖所示
6、,在長為32m、寬20m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向, 一條橫向,橫向與縱向互相垂直),把耕地分成大小不等的六塊作試驗田,要使試 驗田面積為570m2,問道路應多寬?21 .某公司試銷一種成本單價為50元/件的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于80元/件,經試銷調查,發(fā)現銷售量 y (件)與銷售單價 X (元/件) 可近似看作一次函數 y=kx+b的關系(如圖所示)(I)根據圖象,求一次函數 y=kx+b的解析式,并寫出自變量 x的取值范圍;(n)該公司要想每天獲得最大的利潤,應把銷售單價定為多少?最大利潤值為多少?四、解答題(本大題共4小題,共32.0分)22
7、 .用適當的方法解下列方程: x2-1=4x -2(x-6) =2 (6-x)23.如圖,在平面直角坐標系中,點。為坐標原點,已知 AABC三個頂點坐標分別為(-4, 1) , B (-3, 3) , C (-1, 2).(1)畫出AABC關于x軸對稱的AAiBiCi,點A, B, C的對稱點分別是點 A1、B1、 Ci,直接寫出點 An Bi, Ci 的坐標:Ai () , Bi () , Ci ();(2)畫出BBC繞原點。順時針旋轉90。后得到的、2B2c2,連接CiC2,CC2,CiC, 并直接寫出CCiC2的面積是 .第4頁,共i7頁24.已知:如圖,在 AABC中,/BAC=i20
8、:以BC為邊向形外 作等邊三角形BCD,把UBD繞著點D按順時針方向旋轉 60°后得至ij AECD,若AB=5, AC=3,求/BAD的度數與 AD 的長.25.如圖,已知拋物線 y=ax2+32x+4的對稱軸是直線 x=3,且與x軸相交于A, B兩點(B點在A點右側)與y軸交于C點.(i)求拋物線的解析式和 A、B兩點的坐標;(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使4PBC的面積最大.若存在,請求出 APBC的最大面積;若不存在, 試說明理由;(3)若M是拋物線上任意一點,過點 M作y軸的平行線,交直線 BC于點N,當 MN=3時,求
9、 M點的坐標.圖1圖2第7頁,共17頁答案和解析1 .【答案】B【解析】解:二J兀二次方程4x2-1=5x,.整理為:4x2-5x-1=0,故一元二次方程的二次項 系數、一次項 系數、常數項 分 別為 : 4, -5, -1故 選 : B直接將方程整理為 一般形式,進 而利用二次項 系數、一次項 系數、常數項 的定 義 分析得出答案此 題 主要考 查 了一元二次方程的一般形式,正確把握一元二次方程的定義 是解題關鍵2 .【答案】D【解析】解:A、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;B 、是 軸對 稱 圖 形,不是中心對 稱 圖 形,故此 選項錯誤 ;C、不是軸對稱圖形,也不是中心對稱
10、圖形,故此選項錯誤;D 、是 軸對 稱 圖 形,也是中心對 稱 圖 形,故此 選項 正確故 選 : D根據 軸對 稱 圖 形與中心 對 稱 圖 形的概念求解本 題 考 查 了中心 對 稱 圖 形與 軸對 稱 圖 形的概念:軸對 稱 圖 形的關 鍵 是 尋 找 對稱 軸 , 圖 形兩部分沿對 稱 軸 折疊后可重合;中心對 稱 圖 形是要 尋 找 對 稱中心,旋 轉 180度后與原 圖 重合3 .【答案】A【解析】解:二一元二次方程x2-3x=1,即x2-3x-1=0的兩個實數根為a, 國.,.a + 0 =3故 選 : A根據根與系數的關系即可得出 a+的值,止題得解.本題考查了根與系數的關系:
11、若x1, 乂2是一元二次方程ax2+bx+c=0 a*。的兩根時,x1+x2=- - , x1?x2=-.4 .【答案】D【解析】解:.拋物線 y=x2-4x+4 ,.該拋物線的開口向上,故選項A正確,2(4)2-4 X >4=0,故該拋物線與x軸只有一個交點,故選項B正確,對稱軸是直線x=F ; =2,故選項C正確,當x>2時,y隨x的增大而增大,故選項D錯誤,故選:D.根據題目中的拋物線,可以判斷各個選項中的說法是否正確,從而可以解答本題.本題考查二次函數的性質,解答本題的關鍵是明確題意,利用二次函數的性質解答.5 .【答案】A【解析】解:設方程的另一個根為a,則-1 + a
12、=4解得a =5故選:A .根據根與系數的關系可得出兩根之和 為4,從而得出另一個根.本題考查了根與系數的關系:若x1, x2是一元二次方程ax2+bx+c=0 gw。的兩本艮盯,x1+x2 ”,x1?x2一 ” .6 .【答案】B【解析】解:A、當a=0時,二次項系數等于0,不是二次函數,故選項錯誤;B、是二次函數,故選項正確;C、是一次函數,故選項錯誤;D、不是整式,不是二次函數,故選項錯誤;故選:B.根據二次函數的定 義:二的項系數不為0,舉出特例即可判斷.本題主要考查了二次函數的定義,是一個基礎題目.7 .【答案】B【解析】解:由 y=-x2+2x-2,知y二-X11 /-I ;,拋物
13、線y=-x2+2x-2的頂點坐標為:1-1).故選:B.利用配方法將拋物 線的解析式y(tǒng)=-x2+2x-2轉化為頂點式解析式,然后求其頂 點坐標.本題考查了二次函數的性 質.二次函數的三種形式:一般式:y=ax2+bx+c,頂點式:y= x-h)2+k;兩根式:y=a x-x1) x-x2).8 .【答案】C【解析】解:.將BBC繞點C順時針旋轉90°得到AEDC. . zDCE= ZACB=20° , /BCD= /ACE=90°, AC=CE , ACD=900 -20 =70 °, 點A, D, E在同一條直線上,.jADC+/EDC=180
14、6;, zEDC+ZE+/DCE=180°, .jADC=/E+20°,v JACE=90 , AC=CEzDAC+ ZE=90 °, ZE= ZDAC=45°在 AADC 中,ZADC+/DAC+ZDCA=180 ,即 45 +70°+ /ADC=180 ,解得:ZADC=65 ,故選:C.根據旋轉的性質和三角形內角和解答即可.此題考查旋轉的性質,瀏是根據旋轉的性質和三角形內角和解答.9 .【答案】B【解析】解:將拋物線y=-2x2+1向左平移1個單位,再向下平移3個單位長度,得y=-2X+1 )2-2;故所得拋物線的解析式為y=-2 x+1
15、 )22故選:B.按照左加右減,上加下減”的規(guī)律.主要考查了函數圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數解析式.10 .【答案】D【解析】解:.y=x2-4x+m,.圖象的開口向上,對稱軸是直線x=-Jl =2,C 4,y3)關于抽x=2的對稱點是(0,y3),-K0<2,»2<丫3<丫1,故選:D.根據二次函數的解析式得出 圖象的開口向上,對稱軸是直線x=2,根據x<2 時,y隨x的增大而減小,即可得出答案.本題主要考查對二次函數圖象上點的坐標特征,二次函數的性質等知識點的理解和掌握,能熟練地運用二次函數的性 質進行推理是解此題
16、的關鍵.11 .【答案】B【解析】解:設二、三月份的平均增長率為x,則二月份的生產量為100X 1+x),三月份 的生產量為100X 1+x) 1+x),根據題意,得 100 Q+x)+100 1+x)2=240.故選:B.設二、三月份的平均增長率為x,根據一月份生產機器100臺,二月份的生產量十三月份的生產量=240臺,可列出方程.本題考查了由實際問題抽象出一元二次方程的知 識,解決本題的關鍵是得到 相應的等量關系,注意三月份的生 產量是在二月份生 產量的基礎上得到的.12 .【答案】B【解析】解:由圖象可知:a<0, b>0, c>0, abc<0,故此選項錯誤;
17、當x=-1時,y=a-b+c<0,即b>a+c,故此選項錯誤;由對稱知,當x=2時,函數值大于0,即y=4a+2b+c>0,故此選項正確; 當x=3時函數值小于0,y=9a+3b+c<0,且乂=-q =1, . I即a=,代入得9 -:)+3b+c<0,得2c<3b,故此選項正確;當x=1時,y的值最大.此時,y=a+b+c,而當 x=n 時,y=an2+bn+c,所以 a+b+c>an2+bn+c,故 a+b> an2+bn,即 a+b> n Qn+b),故喀項正確.故正確.故選:B.由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判
18、斷c的符號,然 后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷. 本題主要考查了圖象與二次函數系數之 間的關系,二次函數y=ax2+bx+c系數 符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的 個數確定.13 .【答案】寺5【解析】解:.方程kx2+x=2-5x2是關于x的一元二次方程, k+5)x2+x-2=0,貝 U k+5w。,解得:k5.故答案為:為5.直接利用一元二次方程的定 義分析得出答案.此題主要考查了一元二次方程的定義,正確把握定義是解題關鍵.14 .【答案】-4【解析】解:.y=x2+2x-3= x+1)2-4,.二次函數y=x2+2
19、x-3的最小值是-4.故答案為:-4.把二次函數解析式整理成 頂點式形式,然后根據二次函數最 值問題解答即可.本題考查了二次函數的最值問題,把函數解析式整理成頂點式形式求解更簡便.15 .【答案】0【解析】解:.拋物線y=ax2+bx+c Qw。峰寸稱軸是直線x=2,且經過點5, 0),F刖十匚=口. 5a+c=0, b=-4a, .a-b+c=a+4a+c=5a+c=q故答案為:0.根據拋物線y=ax2+bx+c a*q啰t稱軸是直線x=2,且經過點5,0),可以求得5a+c=0, b=-4a,從而可以求得所求式子的 值.本題考查二次函數的性質,解答本題的關鍵是明確題意,利用二次函數的性質解
20、答.16.【答案】2013【解析】解: 他意可知:2m2-3m-1=0, .2m2-3m=1原式=3 2m2-3m)+2010=2013.故答案為:2013.根據一元二次方程的解的定 義即可求出答案.本題考查一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定 義,本題屬于基礎題型.17 .【答案】k< 4【解析】解:.二次函數y=x2-4x+k中a=1>0,圖象的開口向上,又二次函數y=x2-4x+k的圖象的頂點在x軸下方,:匡(4)2-4 X>k>0,解得:k<4,故答案為:k<4.先根據函數解析式得出拋物 線的開口向上,根據頂點在x軸的下方得出&
21、gt;0, 求出即可.本題考查了二次函數的圖象與系數的關系和拋物 線與x軸的交點,能根據題 意得出(-4)2-4 X冰>0是解此題的關鍵.18 .【答案】7【解析】解:過D點作DF1BC,垂足為F,過E點作EGSD,交AD的延長線與G點,由旋轉的性質可知CD=ED,v £DG+ /CDG= ZCDG+ ZFDC=90°, .zEDG=/FDC,又ZDFC=/G=90°,zCDFw 正DG,.CF=EG,_ 1 .Szade = ' ADX EG-6, AD=4 ,. EG=3,貝U CF=EG=3,第13頁,共17頁依 題 意得四 邊 形 ABFD
22、為 矩形,. BF=AD=4 ,. BC=BF+CF=4+3=7,故答案 為 : 7過D點作DF1BC,垂足為F,過E點作EG必D,交AD的延長線與G點,由 旋轉的性質可知約DF0在DG,從而有CF=EG,由BDE的面積可求EG,得 出 CF 的 長 ,由矩形的性質 得 BF=AD ,根據 BC=BF+CF 求解本 題 考 查 了旋 轉 的性 質 的運用,直角梯形的性質 的運用關鍵 是通 過 DC、 DE的旋 轉 關系,作出旋轉 的三角形19.【答案】 解:(1)根據題意得kwo且= (-6) 2-4k> 0,解得k< 9且kwo;( 2) k 的最大整數為8,此時方程化為8x2-
23、6x+1=0,( 2x-1 )(4x-1 ) =0,所以x1=12, x2=14 【解析】1)利用一元二次方程的定義和判別式的意義得到 “0且=2-4k>0,然 后求出兩不等式的公共部分即可;2)先確定k的最大整數值得到方程8x2-6x+1=0,然后利用因式分解法解方程即可本題考查了根的判別式:一元二次方程ax2+bx+c=0 a*。的根與=b2-4ac有如下關系:當4>0時,方程有兩個不相等的兩個 實數根;匕=0時,方程有兩個相等的兩個實數根;0時,方程無實數根.也考查了一元二次方程的定義20 .【答案】解:設道路為x米寬,由題意得:(32-2x)(20-x) =570,整理得:
24、x2-36x+35=0,解得:x1=1, x2=35,經檢驗是原方程的解,但是x=35>20,因此不合題意舍去,答:道路為1m 寬【解析】設 道路的 寬為 x 米,根據 題 意列出方程,求出方程的解即可得到結 果此 題 考 查 了一元二次方程的應 用,找出 題 中的等量關系是解本題 的關 鍵 21 .【答案】 解:(I)由函數的圖象得:40=60x+b30=70x+b,解得: k=-1b=100,.所以 y=-x+100 (50 w 80 ;(n)設每天獲得的利潤為 W元,由(I)得: W= (x-50) y= (x-50) (-x+100) =-x2+l50x-5000=- (x-75
25、) 2+625,.-K0,.當x=75時,W最大=625即該公司要想第天獲得最大利潤,應把銷售單價為75元/件,最大利潤為625 元【解析】(I )根岫意解方程組即可得到結論;(n)根據二次函數的性質即可得到結論.本 題 考 查 了二次函數的應 用,正確的列出函數關系式是解題 的關 鍵 22.【答案】 解:由原方程可化為x2-4x-1=0,( x-2) 2=5,. x1=2+5 , x1=2-5 ;2 解:由原方程得(x-6)+2( x-6) =0( x-6)(x-6+2) =0x-6=0 或 x-6+2=0x1=6, x2=4;【解析】 用配方法 簡 便; 用提公因式簡 便本 題 考 查 的
26、是解方程,三種方法中公式法是基本的方法,而最常用的方法是本 題 的配方法和提公因式法23 .【答案】-4, -1 -3, -3 -1, -2 6【解析】解:(1) A1B1C1 如 圖 所示,: A1( -4, -1), B1( -3, -3),C1( -1, -2);故答案 為 ( -4, -1),(-3, -3),(-1, -2);第 15 頁,共 17 頁I II2)、2B2C2如圖所示;匚=1 MM=6.故答案為6.1)例1J作出A、B、C關于x軸對稱點A1、B1、5即可;2)別J作出A、B、C的對應點A2、B2、C2即可;本題考查作圖-旋轉變換,倘-軸對稱變換等知識,解題的關鍵是理解
27、題意, 屬于中考??碱}型.24 .【答案】 解:二小BDAECD, .AD=DE, ZBDA=ZDCE,.-.zBDC= ZADE=60 °, ZABD=ZECD , . zBAC=120 °, ZBDC=60 °, zBAC+/BDC=180 : MBD+/ACD=180 : .zACD+ZECD=180 °, . A、C、E 共線,丁./ADE是等邊三角形, .zEAD=60°, AD=AE, . zBAD=/BAC-/CAD=60 °, AD =AE=AC +CE =AC +AB=3+5=8 .【解析】只要證明BDE是等邊三角形
28、,即可推出/EAD=60 ,AD=AE ,推出 /BAD=/BAC-/CAD=60° ,推出 AD=AE=AC+CE=AC+AB=3+5=8 .本題考查旋轉變換、等邊三角形的性質、三邊形內角和定理等知 識,解題的關鍵是充分利用旋轉不變性解決問題,本題的突破點是證明A、C、E共線,AAED是等邊三角形即可.25.【答案】 解:(1) ,.拋物線y=ax2+32x+4的對稱軸是直線x=3, .-322a =3,解得:a=-14 ,2.,拋物線的解析式為 y=-14x+32x+4. 2當 y=0 時,-14x +32 x+4=0, 解得:xi =-2, x2=8 ,.,點A的坐標為(-2, 0),點B的坐標為(8, 0). 2(2)當 x=0 時,y=-14x +32x+4=4, .點C的坐標為(0,4).設直線BC的解析式為尸kx+b (kw。.將 B (8, 0)、C (0, 4)代入 y=kx+b, 8k+b=0b=4 ,解得:k=-12b=4,.直線BC的解析式為y=-12x+4.假設存在,設點 P的坐標為(x, -14x2+32x+4),過點P作PD/y軸,交直線BC于點 D,則點D的坐標為(x, -12x+4),如圖所示. PD=-14x2+32x+4- (-12x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 7.1.2復數的幾何意義【超級課堂】2022-2023學年高一數學教材配套教學精-品課件+分層練習人教A版2019必修第二冊
- 《小區(qū)推廣策略》課件
- 《水健康知識》課件
- 計算機軟件及應用暈暈課件
- 《呼吸內科醫(yī)生培訓》課件
- 河南省周口市太康縣靈運初級中學2024-2025學年九年級上學期1月期末考試語文試題(含答案)
- 單位管理制度展示大全【人力資源管理篇】
- 單位管理制度收錄大合集【人事管理篇】
- Module 2 Unit 3 課后培優(yōu)分級練(解析版)
- 2025無償保管合同協(xié)議書
- (新版)北師大版五年級數學上冊期末試卷
- 小班《火車開了》音樂欣賞課評課稿
- 倫理學與醫(yī)學倫理學 (醫(yī)學倫理學課件)
- GB/T 6344-2008軟質泡沫聚合材料拉伸強度和斷裂伸長率的測定
- GA/T 1740.1-2020旅游景區(qū)安全防范要求第1部分:山岳型
- 產后康復客戶健康評估表格
- 個人現實表現材料1500字德能勤績廉(通用6篇)
- 六年級上冊數學單元測試-5.圓 青島版 (含答案)
- (精心整理)高一語文期末模擬試題
- QC成果解決鋁合金模板混凝土氣泡、爛根難題
- 管線管廊布置設計規(guī)范
評論
0/150
提交評論