材料力學的介紹專業(yè)英語_第1頁
材料力學的介紹專業(yè)英語_第2頁
材料力學的介紹專業(yè)英語_第3頁
材料力學的介紹專業(yè)英語_第4頁
材料力學的介紹專業(yè)英語_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1. Introduction to Mechanics of Materials 材料力學的介紹Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that is known by a variety of names, including “strength of materials” and “mechanics of

2、 deformable bodies.” The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by

3、 the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanical behavior of the body. 材料力學是應用力學的一個分支,用來處理固體在不同荷載作用下所產生的反應。這個研究領域包含多種名稱,如:“材料強度”,“變形固體力學”。本書中研究的固體包括受軸向載荷的桿,軸,梁,圓柱及由這些構件組成的結構。一般情況下,研究的目的是測定由荷載引起

4、的應力、應變和變形物理量;當所承受的荷載達到破壞載荷時,可測得這些物理量,畫出完整的固體力學性能圖。Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials. On many occasions we will make logical derivations to obtain formulas and equations for predicting mechanical behavior, but at the same

5、 time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the material are known. These properties are available to us only after suitable experiments have been made in the laboratory. Also, many problems of importance in engineering cannot be handled

6、 efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in

7、others. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei(1564-1642) made experiments to determine the strength of wires, bars, and beams, although they did not develop any adequate theories (by todays standards) to their test results. By contrast, the famous mathematician Leonhard

8、 Euler(1707-1783) developed the mathematical theory of columns and calculated the critical load of a column in 1744, long before any experimental evidence existed to show the significance of his results. Thus, Eulers theoretical results remained unused for many years, although today they form the ba

9、sis of column theory.在材料力學的研究中,理論分析和實驗研究是同等重要的。必須認識到在很多情況下,通過邏輯推導的力學公式和力學方程在實際情況中不一定適用,除非材料的某些性能是確定的。而這些性能是要經過相關實驗的測定來得到的。同樣,當工程中的重要的問題用邏輯推導方式不能有效的解決時,實驗測定就發(fā)揮實用性作用了。材料力學的發(fā)展歷史是一個理論與實驗極有趣的結合,在一些情況下,是實驗的指引得出正確結果而產生理論,在另一些情況下卻是理論來指導實驗。例如,著名的達芬奇(1452-1519)和伽利略(1564-1642)通過做實驗測定鋼絲,桿,梁的強度,而當時對于他們的測試結果并沒有充足

10、的理論支持(以現(xiàn)代的標準)。相反的,著名的數(shù)學家歐拉(1707-1783) ,在1744年就提出了柱體的數(shù)學理論并計算其極限載荷,而過了很久才有實驗證明其結果的正確性。 因此,歐拉的理論結果在很多年里都未被采用,而今天,它們卻是圓柱理論的奠定基礎。 The concepts of stress and strain can be illustrated in an elementary way by considering the extension of prismatic bar see Fig.1.4(a). 通過對等截面桿拉伸的研究初步解釋應力和應變的概念如圖1.4(a)。A pris

11、matic bar is one that has constant cross section throughout its length and a straight axis. 等截面桿是一個具有恒定截面的直線軸。In this illustration the bar is assumed to be loaded at its ends by axial forces P that produce a uniform stretching, or tension, of the bar. 這里,假設在桿的末端施加軸向力P,產生均勻的伸展或拉伸。By making an artific

12、ial cut (section mm) though the bar at right angels to its axis, we can isolate part of the bar as a free body Fig.1.4 (b). 假設沿垂直于軸線的方向切割桿,我們就能把桿的一部分當作自由體隔離出來圖1.4(b)。At the right-hand end the tensile force P is applied, and at the other end there are forces representing the removed portion of the ba

13、r upon the part that remains. 張力P作用于桿的右端,在另一端就會出現(xiàn)一些力來代替桿被切除的那一部分。These forces will be continuously distributed over the cross section, analogous to the continuous distribution of hydrostatic pressure over a submerged surface. 這些力連續(xù)地分布在橫截面上,類似于作用在被淹沒物體表面的連續(xù)的靜水壓力。The intensity of force, that is, the p

14、er unit area, is called the stress and is commonly denoted by the Greek letter .力的密度,也就是單位面積上的力的大小,稱為應力,一般用表示。Assuming that the stress has a uniform distribution over the cross section see Fig.1.4(b), we can readily see that its resultant is equal to the intensity times the cross-sectional area A of

15、 the bar. 假設應力是均勻分布在橫截面上如圖1.4(b),易得出它的大小等于密度乘以桿的橫截面積A。Furthermore, from the equilibrium of the body shown in Fig.1.4 (b), we can also that this resultant must be equal in magnitude and opposite in direction to the force P. 另外,通過圖1.4(b)中所示物體,也由力的平衡可得到它與力P等大反向。Hence, we obtain 因此得到 (1.3)as the equatio

16、n for the uniform stress in a prismatic bar.為等截面桿中平均應力的計算公式。This equation shows that stress has units of force divided by area-for example, Newtons per square millimeter () or pounds per square inch (psi). 從這個公式可以看出,應力的單位是力除以面積例如:牛每平方毫米()或磅每平方英寸(psi)。When the bar is being stretched by the forces P,

17、as shown in the figure, the resulting stress is a tensile stress; if the forces are reversed in direction, causing the bar to be compressed, they are called compressive stresses. 當桿在力的作用下被拉伸時,如圖所示,所產生的應力稱為拉應力;當施加相反方向的力時,桿被壓縮,這時所產生的應力稱為壓應力。A necessary condition for Eq. (1.3) to be valid is that the s

18、tress must be uniform over the cross section of the bar. This condition will be realized if the axial force P acts through the centroid of the cross section, as can be demonstrated by statics. When the load P does not act at the centroid, bending of the bar will result, and a more complicated analys

19、is is necessary. Throughout this book, however, it is assumed that all axial forces are applied at the centroid of the cross section unless specifically stated to the contrary. Also, unless stated otherwise, it is generally assumed that the weight of the object itself is neglected, as .方程(1.3)的必要條件是

20、應力必須均勻分布在桿的橫截面上。如果軸向力P通過截面的形心時,這個條件可以滿足,同時也可以通過靜力學驗證。當載荷P不是作用在形心時,將會產生撓度,就需要更加復雜的分析了。如果沒有特殊說明,本書中假定所有的軸向力都作用在橫截面的形心。除非另有說明,否則物體本身的質量一般忽略不計,如討論圖1.4中的桿情況一樣。 The total elongation of a bar carrying an axial force will be denoted the Greek letter see Fig. 1.4(a), and the elongation per unit length, or st

21、rain, is then determined by the equation (1.4)where L is the total length of the bar. Note that the strain is nondimensional quantity. It can be obtained accurately from Eq. (1.4) as long as the strain is uniform throughout the length of the bar. If the bar is in tension, the strain is a tensile str

22、ain, representing an elongation or a stretching of the material; if the bar is in compression, the strain is a compressive strain, which means that adjacent cross sections of the bar move closer to one another.受軸向力時,桿的總伸長量用希臘字母表示,如圖1.4(a)所示。單位長度的伸長即應變,可以用計算得到。這里L是桿的總長度。注意應變是無量綱量,只要應變在桿上是均勻的,就可以通過方程(

23、1.4)得到精確的結果。如果桿被拉伸,此時的應變稱為拉應變,即材料伸長或被拉伸;如果桿被壓縮,即為壓應變,這就意味著桿的相鄰截面間的距離變小。 (Selected from Stephen P.Timoshenko and James M.Gere,mechanics of materials,Van Nostrand Reinhold Company Ltd.,1978 )材料力學的介紹材料力學是應用力學的一個分支,用來處理固體在不同荷載作用下所產生的反應。這個研究領域包含多種名稱,如:“材料強度”,“變形固體力學”。本書中研究的固體包括受軸向載荷的桿,軸,梁,圓柱及由這些構件組成的結構。一

24、般情況下,研究的目的是測定由荷載引起的應力、應變和變形物理量;當所承受的荷載達到破壞載荷時,可測得這些物理量,畫出完整的固體力學性能圖。在材料力學的研究中,理論分析和實驗研究是同等重要的。必須認識到在很多情況下,通過邏輯推導的力學公式和力學方程在實際情況中不一定適用,除非材料的某些性能是確定的。而這些性能是要經過相關實驗的測定來得到的。同樣,當工程中的重要的問題用邏輯推導方式不能有效的解決時,實驗測定就發(fā)揮實用性作用了。材料力學的發(fā)展歷史是一個理論與實驗極有趣的結合,在一些情況下,是實驗的指引得出正確結果而產生理論,在另一些情況下卻是理論來指導實驗。例如,著名的達芬奇(1452-1519)和伽利略(1564-1642)通過做實驗測定鋼絲,桿,梁的強度,而當時對于他們的測試結果并沒有充足的理論支持(以現(xiàn)代的標準)。相反的,著名的數(shù)學家歐拉(1707-1783) ,在1744年就提出了柱體的數(shù)學理論并計算其極限載荷,而過了很久才有實驗證明其結果

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論