




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、基于MATLAB的帶噪圖像的高斯濾波摘要:圖像常常被強(qiáng)度隨機(jī)信號(也稱為噪聲)所污染一些常見的噪聲有椒鹽(Salt & Pepper)噪聲、脈沖噪聲、高斯噪聲等椒鹽噪聲含有隨機(jī)出現(xiàn)的黑白強(qiáng)度值而脈沖噪聲則只含有隨機(jī)的白強(qiáng)度值(正脈沖噪聲)或黑強(qiáng)度值(負(fù)脈沖噪聲)與前兩者不同,高斯噪聲含有強(qiáng)度服從高斯或正態(tài)分布的噪聲研究濾波就是為了消除噪聲干擾。圖像濾波總體上講包括空域?yàn)V波和頻域?yàn)V波。頻率濾波需要先進(jìn)行傅立葉變換至頻域處理然后再反變換回空間域還原圖像,空域?yàn)V波是直接對圖像的數(shù)據(jù)做空間變換達(dá)到濾波的目的。它是一種鄰域運(yùn)算,即輸出圖像中任何像素的值都是通過采用一定的算法,根據(jù)輸入圖像中對用像
2、素周圍一定鄰域內(nèi)像素的值得來的。如果輸出像素是輸入像素鄰域像素的線性組合則稱為線性濾波(例如最常見的均值濾波和高斯濾波),否則為非線性濾波(中值濾波、邊緣保持濾波等)。線性平滑濾波器去除高斯噪聲的效果很好,且在大多數(shù)情況下,對其它類型的噪聲也有很好的效果。線性濾波器使用連續(xù)窗函數(shù)內(nèi)像素加權(quán)和來實(shí)現(xiàn)濾波。特別典型的是,同一模式的權(quán)重因子可以作用在每一個(gè)窗口內(nèi),也就意味著線性濾波器是空間不變的,這樣就可以使用卷積模板來實(shí)現(xiàn)濾波。如果圖像的不同部分使用不同的濾波權(quán)重因子,且仍然可以用濾波器完成加權(quán)運(yùn)算,那么線性濾波器就是空間可變的。任何不是像素加權(quán)運(yùn)算的濾波器都屬于非線性濾波器非線性濾波器也可以是空
3、間不變的,也就是說,在圖像的任何位置上可以進(jìn)行相同的運(yùn)算而不考慮圖像位置或空間的變化。關(guān)鍵詞:圖像,高斯濾波,去噪,MATLAB1. 引言20世紀(jì)20年代,圖像處理首次得到應(yīng)用。上個(gè)世紀(jì)60年代中期,隨著計(jì)算機(jī)科學(xué)的發(fā)展和計(jì)算機(jī)的普及,圖像處理得到廣泛的應(yīng)用。60年代末期,圖像處理技術(shù)不斷完善,逐漸成為一個(gè)新興的學(xué)科。圖像處理中輸入的是質(zhì)量低的圖像,輸出的是改善質(zhì)量后的圖像。為了改善圖像質(zhì)量,從圖像中提取有效信息,必須對圖像進(jìn)行去噪預(yù)處理。根據(jù)噪聲頻譜分布的規(guī)律和統(tǒng)計(jì)特征以及圖像的特點(diǎn),出現(xiàn)了多種多樣的去噪方法。經(jīng)典的去噪方法有:空域合成法,頻域合成法和最優(yōu)合成法等,與之適應(yīng)的出現(xiàn)了許多應(yīng)用方
4、法,如均值濾波器,中值濾波器,低通濾波器,維納濾波器,最小失真法等。這些方法的廣泛應(yīng)用,促進(jìn)數(shù)字信號處理的極大發(fā)展,顯著提高了圖像質(zhì)量。一幅原始圖像在獲取和傳輸過程中會(huì)受到各種噪聲的干擾,使圖像質(zhì)量下降,對分析圖像不利。反映到圖像畫面上,主要有兩種典型的噪聲。一種是幅值基本相同,但出現(xiàn)的位置隨機(jī)的椒鹽噪聲,另一種則每一點(diǎn)都存在,但幅值隨機(jī)分布的隨機(jī)噪聲。為了抑制噪聲、改善圖像質(zhì)量,要對圖像進(jìn)行平滑處理。圖像平滑處理的方法多種多樣,有鄰域平均、中值濾波,高斯濾波、灰度最小方差的均值濾波等。2. 高斯平滑濾波的原理高斯濾波是根據(jù)高斯函數(shù)的形狀來選擇權(quán)值的線性平滑濾波器。高斯平滑濾波器對去除服從正態(tài)
5、分布的噪聲是很有效果的。一維零均值高斯函數(shù)為 。其中,高斯分布參數(shù) 決定了高斯濾波器的寬度。對圖像來說,常用二維零均值離散高斯函數(shù)作平滑濾波器,函數(shù)表達(dá)式如下: 式(1) 高斯函數(shù)具有5個(gè)重要性質(zhì): (1)二維高斯函數(shù)具有旋轉(zhuǎn)對稱性,即濾波器在各個(gè)方向上的平滑程度是相同的。一般來說一幅圖像的邊緣方向是不知道的。因此,在濾波之前是無法確定一個(gè)方向比另一個(gè)方向上
6、要更多的平滑的。旋轉(zhuǎn)對稱性意味著高斯濾波器在后續(xù)的圖像處理中不會(huì)偏向任一方向。 (2)高斯函數(shù)是單值函數(shù)。這表明,高斯濾波器用像素鄰域的加權(quán)均值來代替該點(diǎn)的像素值,而每一鄰域像素點(diǎn)的權(quán)值是隨著該點(diǎn)與中心點(diǎn)距離單調(diào)遞減的。這一性質(zhì)是很重要的,因?yàn)檫吘壥且环N圖像局部特征。如果平滑運(yùn)算對離算子中心很遠(yuǎn)的像素點(diǎn)仍然有很大的作用,則平滑運(yùn)算會(huì)使圖像失真。 (3)高斯函數(shù)的傅立葉變換頻譜是單瓣的。這一性質(zhì)是高斯函數(shù)傅立葉變換等于高斯函數(shù)本身這一事實(shí)的直接推論。圖像常被不希望的高頻信號所污染,而所希望的圖像特征,既含有低頻分量,又含有高
7、頻分量。高斯函數(shù)傅立葉變換的單瓣意味著平滑圖像不會(huì)被不需要的高頻信號所污染,同時(shí)保留了大部分所需要的信號。 (4)高斯濾波器的寬度(決定著平滑程度)是由參數(shù)表證的,而且和平滑程度的關(guān)系是非常簡單的。越大,高斯濾波器的頻帶就越寬,平滑程度就越好。通過調(diào)節(jié)平滑程度參數(shù),可在圖像特征分量模糊(過平滑)與平滑圖像中由于噪聲和細(xì)紋理所引起的過多的不希望突變量(欠平滑)之間取得折衷。 (5)由于高斯函數(shù)的可分離性,大高斯濾波器可以有效實(shí)現(xiàn)。通過二維高斯函數(shù)的卷積可以分兩步來進(jìn)行,首先將圖像與一維高斯函數(shù)進(jìn)行卷積,然后將卷積的結(jié)果與方向
8、垂直的相同一維高斯函數(shù)進(jìn)行卷積。因此,二維高斯濾波的計(jì)算量隨濾波模板寬度成線性增長而不是成平方增長。這些性質(zhì)使得它在早期的圖像處理中特別有用,表明高斯平滑濾波器無論在空間域還是在頻率域都是十分有效的低通濾波器。 高斯函數(shù)的可分離性很容易表示: 式(2) 式(3) 式(4)在圖像濾波中,常用的方法是線性濾波技術(shù)和非線性濾波技術(shù),線性濾波以其完美的理論基礎(chǔ),數(shù)學(xué)處理簡單、易于采用和硬件實(shí)現(xiàn)等優(yōu)點(diǎn),一直在圖像濾
9、波領(lǐng)域中占有重要地位。3. 高斯濾波實(shí)驗(yàn)結(jié)果,分析與總結(jié)以下即為本課題研究的主要內(nèi)容及要求: (1)使用imread()讀入原始的彩色圖像。(2)用imnoise()在灰度圖像中加入椒鹽噪聲。(3)利用高斯濾波 A1=fspecial('gaussian',k,n3) %生成高斯序列Y1=filter2(A2,g)/255 用生成的高斯序列進(jìn)行濾波。(4)顯示濾波后的圖像。在MATLAB里運(yùn)行程序:ClearClose allA1=imread('F:/1.bmp');A2=imnoise(A1,'salt &
10、pepper',0.05);n=input('請輸入高斯濾波器的均值n');k=input('請輸入高斯濾波器的方差n');A3=fspecial('gaussian',k,n3); %生成高斯序列Y1=filter2(A3,g)/255; %用生成的高斯序列進(jìn)行濾波圖一: 加入椒鹽噪聲處理前后的圖像圖二:高斯噪聲處理前后的圖像4. 結(jié)束語在圖像處理過程中,消除圖像的噪聲干擾是一個(gè)非常重要的問題,本文利用matlab軟件,采用高斯濾波的方式,對帶有椒鹽噪聲的圖像進(jìn)行處理,經(jīng)過濾波后的圖像既適合人眼的視覺感覺又能夠消除圖像中的干擾影響。通過本次試驗(yàn)我們可以看到高斯濾波對于濾除圖像的“椒鹽”噪聲非常有效,它可以做到既去除噪聲又能保護(hù)圖像的邊緣,從而獲得較滿意的復(fù)原效果,尤其在濾除疊加白噪聲和長尾疊加噪聲方面顯出極好的性能。參考文獻(xiàn):1 張志涌 精通MATLAB 6.5版教程.北京:北京航天航空大學(xué)出版社, 2003(56)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 古詩課題申報(bào)書
- 課題申報(bào)書作假
- 發(fā)廊眾籌合同范本
- 員工內(nèi)部借款合同范本
- 修補(bǔ)材料合同范本
- 合同范本找誰寫好
- 分公司保證合同范本
- 合同范例工程范例
- 住宅電梯出售合同范本
- 修建小型廠房合同范本
- 義齒加工廠各部門生產(chǎn)作業(yè)流程
- 筑牢安全防線守護(hù)平安校園
- 公司減資-章程修正案范本
- 2024年普通高等學(xué)校招生全國統(tǒng)一考試(新課標(biāo)I卷)語文含答案
- 工程索賠報(bào)告范文
- 員工期權(quán)合同模板
- 八年級上學(xué)期期末復(fù)習(xí)《全等三角形》單元試卷(含部分解析) 2024-2025學(xué)年人教版數(shù)學(xué)
- 2024至2030年中國毛巾繡電腦繡花機(jī)控制系統(tǒng)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年重慶市公務(wù)員考試《行測》真題及答案解析
- 無人機(jī)理論培訓(xùn)
- 《冠心病病人的護(hù)理》課件
評論
0/150
提交評論