版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、基本操作-5/(4.8+5.32)2area=pi*2.52x1=1+1/2+1/3+1/4+1/5+1/6exp(acos(0.3)a=123;456;789a=1:3,4:6,7:9a1=6: -1:1a=eye(4) a1=eye(2,3)b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5)d=zeros(3,2,2);r1=rand(2, 3)r2=5-10*rand(2, 3)r4=2*randn(2,3)+3arr1=1.1 -2.2 3.3 -4.4 5.5arr1(3)arr1(1 4)arr1(1:2:5)arr2=1 2 3; -2 -3 -4
2、;3 4 5arr2(1,:)arr2(:,1:2:3)arr3=1 2 3 4 5 6 7 8arr3(5:end)arr3(end)繪圖x=0:1:10;y=x.2-10*x+15;plot(x,y)x=0:pi/20:2*piy1=sin(x);y2=cos(x);plot(x,y1,'b-');hold on;plot(x,y2,-k);legend ( sin xx=0:pi/20:2*pi;y=sin(x);figure(1)plot(x,y, 'r-')grid on , cos x );以二元函數(shù)圖z = xexp(-x2-y2)為例講解基本操作
3、,首先需要利用meshgrid函數(shù)生成 X-Y 平面的網格數(shù)據(jù),如下所示:xa = -2:0.2:2;ya = xa;x,y = meshgrid(xa,ya);z = x.*exp(-x.2 - y.2);mesh(x,y,z);建立M文件functionfenshu( grade )ifgrade > 95.0disp('The grade is A.'else);ifgrade > 86.0disp('The grade is B.');elseifdisp(grade > 76.0'The grade is C.');e
4、lsedisp(ifgrade > 66.0'The grade is D.');elsedisp('The grade is F.');endendendendendfunctiony=func(x)ifabs(x)<1y=sqrt(1-x2);elsey=x2-1;endfunctionsumm( n)i = 1;sum = 0;while( i <= n )sum = sum+i;i = i+1;endstr = ' á 1a o' ,num2str(sum);disp(str)end求極限syms xlimit
5、(1+x)(1 /x),x,0,'right')求導數(shù)syms x;f=(sin(x)/x);diff(f)diff(log(sin(x)求積分syms x;int(x2*log(x)syms x;int(abs(x-1),0,2)常微分方程求解dsolve('Dy+2*x*y=x*exp(-x2)','x')計算偏導數(shù)x/(x2 + y2 + z2)(1 /2)diff(x2+y2+z2)(1 /2),x,2)重積分int(int(x*y,y,2*x,x2+1),x,0,1)級數(shù)syms n;symsum(1/2n,1,inf)Taylor 展
6、開式求 y=exp(x)在 x=0 處的 5 階 Taylor 展開式taylor(exp(x),0,6)矩陣求逆A=0 -6 -1; 6 2 -16; -5 20 -10det(A)inv(A)特征值、特征向量和特征多項式A=0 -6 -1; 6 2 -16; -5 20 -10;lambda=eig(A)v,d=eig(A)poly(A)多項式的根與計算p=10-2-5;r=roots(p)p2=poly(r)y1=polyval(p,4)例子:x=-3:3'y=3.03,3.90,4.35,4.50,4.40,4.02,3.26'A=2*x, 2*y, ones(size
7、(x);B=x.2+y.2;c=inv(A'*A)*A'*B;r=sqrt(c(3)+c(1)2+c(2)2)例子ezplot('-2/3*exp(-t)+5 /3*exp(2*t)','-2 /3*exp(-t)+2 /3*exp(2*t)',0,1)grid on;axis(0, 12, 0, 5)密度函數(shù)和概率分布設 x b(20,0.1),binopdf(2,20,0.1)分布函數(shù)設 x N(1100,502 ) , y N(1150,80 2) ,則有normcdf(1000,1100,50)=0.0228 ,1-0.0228=0.97
8、72normcdf(1000,1150,80)=0.0304, 1-0.0304=0.9696統(tǒng)計量數(shù)字特征x=29.8 27.6 28.3mean(x)max(x)min(x)std(x)syms p k;Ex=symsum(k*p*(1-p)(k-1),k,1,inf)syms x y;f=x+y;Ex=int(int(x*y*f,y,0,1),0,1)參數(shù)估計例:對某型號的 20 輛汽車記錄其 5L 汽油的行駛里程(公里) ,觀測數(shù)據(jù)如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.
9、626.9設行駛里程服從正態(tài)分布,試用最大似然估計法求總體的均值和方差。x1=29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7;x2=28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9;x=x1 x2'p=mle('norm',x);muhatmle=p(1),sigma2hatmle=p(2)2m,s,mci,sci=normfit(x,0.5)假設檢驗例:下面列出的是某工廠隨機選取的20只零部件的裝配時間(分):9.810.410.69.69.79.910.911.19
10、.610.210.39.69.911.210.69.810.510.110.59.7設裝配時間總體服從正態(tài)分布,標準差為0.4,是否認定裝配時間的均值在0.05 的水平下不小于10。解 :在正態(tài)總體的方差已知時MATLAB 均值檢驗程序:x1=9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2;x2=10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7;x=x1 x2'm=10;sigma=0.4;a=0.05;h,sig,muci=ztest(x,m,sigma,a,1)得到: h =1, ,% PPT 例
11、2 一維正態(tài)密度與二維正態(tài)密度syms x y;s=1; t=2;mu1=0; mu2=0; sigma1=sqrt(s2); sigma2=sqrt(t2);x=-6:0.1:6;f1=1/sqrt(2*pi*sigma1)*exp(-(x-mu1).2/(2*sigma12);f2=1/sqrt(2*pi*sigma2)*exp(-(x-mu2).2/(2*sigma22);plot(x,f1,'r-',x,f2,'k-.')rho=(1+s*t)/(sigma1*sigma2);f=1/(2*pi*sigma1*sigma2*sqrt(1-rho2)*ex
12、p(-1/(2*(1-rho2)*(x-mu1)2/sigma12-2*rho* (x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)% P34 例%輸出p1 =0.0671p2 =4.5400e-005ans =0.06710.0000% P40 例% 輸出p3 = 0.0874% P40 例% 輸出p4 = 6.1442e-006解微分方程% 輸入:syms p0 p1 p2 ;S=dsolve('Dp0=-lamda*p0','Dp1=-lamda*p1+lamda*p0','Dp2
13、=-lamda*p2+lamda*p1','p0(0) = 1','p1(0) = 0','p2(0) = 0');S.p0,S.p1,S.p2% 輸出:ans =exp(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*exp(-lamda*t)*t2*lamda2% P40 泊松過程仿真% simulate 10 times clear;m=10; lamda=1; x=; for i=1:ms=exprnd(lamda,'seed',1);% seed 是用來控制生成隨機數(shù)的種子 , 使得生
14、成隨機數(shù)的個數(shù)是一樣的 . x=x,exprnd(lamda);t1=cumsum(x); endx',t1'%輸出:ans =0.65090.65092.40613.05700.10023.15720.12293.28000.82334.10330.24634.34961.90746.25700.47836.73531.34478.08000.80828.8882%輸入:N=;for t=0:0.1:(t1(m)+1)if t<t1(1)N=N,0;elseif t<t1(2)N=N,1;elseif t<t1(3)N=N,2;elseif t<t1(
15、4)N=N,3;elseif t<t1(5)N=N,4;elseif t<t1(6)N=N,5;elseif t<t1(7)N=N,6;elseif t<t1(8)N=N,7;elseif t<t1(9)N=N,8;elseif t<t1(10)N=N,9;elseN=N,10;endendplot(0:0.1:(t1(m)+1),N,'r-')%輸出:% simulate 100 times clear;m=100; lamda=1; x=;for i=1:ms= rand('seed');x=x,exprnd(lamda)
16、;t1=cumsum(x);endx',t1'N=;for t=0:0.1:(t1(m)+1)if t<t1(1)N=N,0;endfor i=1:(m-1)if t>=t1(i) & t<t1(i+1)N=N,i;endendif t>t1(m)N=N,m;endendplot(0:0.1:(t1(m)+1),N,'r-')% 輸出:% P48 非齊次泊松過程仿真% simulate 10 timesclear;m=10; lamda=1; x=;fori=1:ms=rand('seed');% exprnd(l
17、amda,'seed',1 ); set seedsx=x,exprnd(lamda);t1=cumsum(x);endx',t1'N=; T=;fort=0:0.1:(t1(m)+1)T=T,t.3;% time is adjusted, cumulative intensity function is t3.ift<t1(1)N=N,0;endfori=1:(m-1)ift>=t1(i) & t<t1(i+1)N=N,i;endendift>t1(m)N=N,m;endendplot(T,N,'r-')% ou
18、tputans =0.42200.42203.33233.75430.16353.91780.06833.98610.38754.37360.27744.65100.29694.94790.93595.88380.42246.30621.76508.071210 times simulation100 times simulation% P50 復合泊松過程仿真% simulate 100 timesclear;niter=100;% iterate numberlamda=1;% arriving ratet=input('Input a time:', 's'
19、;)fori=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timet1=x;whilet1<tx=x,exprnd(lamda);t1=sum(x);% arriving timeendt1=cumsum(x);y=trnd(4,1,length(t1);% rand(1,length(t1);gamrnd(1,1/2,1,length(t1); frnd(2,10,1,length(t1);t2=cumsum(y);endx',t1',y',t2'X=; m=leng
20、th(t1);fort=0:0.1:(t1(m)+1)ift<t1(1)X=X,0;endfori=1:(m-1)ift>=t1(i) & t<t1(i+1)X=X,t2(i);endendift>t1(m)X=X,t2(m);endendplot(0:0.1:(t1(m)+1),X,'r-')跳躍度服從 0,1均勻分布情形跳躍度服從(1, 1/ 2) 分布情形跳躍度服從t ( 10)分布情形% Simulatethe probabilitythatsalesrevenue fallsin some interval.(e.g.in teachi
21、ng material)clear;niter=1.0E4;% number of iterationslamda=6;% arriving rate (unit:minute)t=720;% 12 hours=720 minutesabove=repmat(0,1,niter);% set up storagefor i=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timen=1;while x<tx=x+exprnd(1/lamda);% arriving timeif x>=tn=n;el
22、sen=n+1;endendz=binornd(200,0.5,1,n);% generate n salesy=sum(z);above(i)=sum(y>432000);endpro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson process clear;niter=1.0E3;lamda=1;% number of iterations% arriving ratet=input('Input a time:','s')below=repm
23、at(0,1,niter);% set up storagefor i=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timen=1;while x<tx=x+exprnd(lamda);% arriving timeif x>=tn=n;elsen=n+1;endendr=normrnd(0.05/253,0.23/sqrt(253),1,n); % generate n random jumps y=log(1.0E6)+cumsum(r);minX=min(y);% minmum retur
24、n over next n jumpsbelow(i)=sum(minX<log(950000);endpro=mean(below)Output: t=50, pro=0.45馬氏鏈chushivec0=0 0 1 0 0 0P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0, 0,0,0,1,0jueduivec1=chushivec0*Pjueduivec2=chushivec0*(P2)% 計算 1 到 n 步后的分布chushivec0=0 0 1 0 0 0;
25、P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=10t=1/6*ones(1 6);jueduivec=repmat(t,n 1);for k=1:njueduiveck=chushivec0*(Pk);jueduivec(k,1:6)=jueduiveckend% 比較相鄰的兩行n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% Replace the first dist
26、ribution, Comparing two neighbour absolute-vectors once more chushivec0=1/6 1/6 1/6 1/6 1/6 1/6; P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0, 0,0,0,1,0;n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% 賭博問題模擬(帶吸收壁的隨機游走:結束1次游走所花的時間及終止狀態(tài))a=5; p=1/
27、2;m=0;whilem<100m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endifa=0|a=10break ;endendm a% 賭博問題模擬(帶吸收壁的隨機游走:結束N次游走所花的平均時間及終止狀態(tài)分布規(guī)律)% p=q=1/2p=1/2;m1=0; m2=0; N=1000;t1=0;t2=0;forn=1:1:Nm=0; a=5;whilea>0 & a<10m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endendifa=0t1=t1+m; m1=m1+1;
28、elset2=t2+m; m2=m2+1;endendfprintf('The average timesof arriving0 and 10 respectivelyare %d,%d.n' ,t1/m1,t2/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N);% verify:fprintf('The probabilityof arriving0 and itsapproximaterespectivelyare %d,%
29、d.n' , 5/10,m1/N);fprintf('The expectationof arriving0 or 10 and itsapproximaterespectivelyare %d,%d.n' ,5*(10-5)/(2*p), (t1+t2)/N );% p=qp=1/4;m1=0; m2=0; N=1000;t1=zeros(1,N);t2=zeros(1,N);forn=1:1:Nm=0;a=5;whilea>0 & a<15m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endendi
30、fa=0t1(1,n)=m; m1=m1+1;elset2(1,n)=m; m2=m2+1;endendfprintf('The average times of arriving 0 and 10 respectivelyare %d,%d.n',sum(t1,2)/m1,sum(t2,2)/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N);% verify:fprintf('The probability of arrivin
31、g 0 and its approximate respectively are %d,%d.n',(p10*(1-p)5-p5*(1-p)10)/(p5*(p10-(1-p)10), m1/N);fprintf('The expectation of arriving 0 or 10 and its approximate respectivelyare %d,%d.n',5/(1-2*p)-10/(1-2*p)*(1-(1-p)5/p5)/(1-(1-p)10/p10),(sum(t1,2)+sum(t2,2)/N);%連續(xù)時間馬爾可夫鏈通過 Kolmogorov
32、微分方程求轉移概率輸入:clear;syms p00 p01 p10 p11 lamda mu;P=p00,p01;p10,p11;Q=-lamda,lamda;mu,-muP*Q輸出:ans = -p00*lamda+p01*mu, p00*lamda-p01*mu -p10*lamda+p11*mu, p10*lamda-p11*mu輸入:p00,p01,p10,p11=dsolve('Dp00=-p00*lamda+p01*mu','Dp01=p00*lamda-p01*mu','Dp10=-p10*l amda+p11*mu','
33、Dp11=p10*lamda-p11*mu','p00(0)=1,p01(0)=0,p10(0)=0,p11(0)=1')輸出:p00 =mu/(mu+lamda)+exp(-t*mu-t*lamda)*lamda/(mu+lamda)p01 =(lamda*mu/(mu+lamda)-exp(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-exp(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+exp(-t*mu-t*lamda)*mu2/(m
34、u+lamda)/mu% BPATH1 Brownian path simulation: for endrandn( 'state',100)% set the state of randnT = 1; N = 500; dt = T/N;dW = zeros(1,N);% preallocate arrays .W = zeros(1,N);% for efficiencydW(1) = sqrt(dt)*randn;% first approximation outside the loop .W(1) = dW(1);% since W(0) = 0 is not allowedforj = 2:NdW(j) = sqrt(dt)*randn;% general incrementW(j) = W(j-1) + dW(j);endplot(0:dt:T,0,W,'r-')% plot W against txlabel('t',
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版暨南大學離婚心理學研究與應用合同3篇
- 二零二五年度電梯門套綠色環(huán)保材料采購合同3篇
- 二零二五年度集團高層管理人員聘任與職務調整合同6篇
- 二零二五年股票代持與反洗錢義務合同3篇
- 二零二五年駕駛員勞務派遣與車輛充電樁油耗管理服務合同3篇
- 二零二五版戶外拓展訓練特色課程開發(fā)與推廣合同3篇
- 二零二五年度玻璃器皿生產設備租賃合同3篇
- 2025年度國際教育培訓機構合作合同6篇
- 展會展位搭建服務合同(2篇)
- 2025年度餐飲設施設備租賃合同書3篇
- 醫(yī)院手術室醫(yī)院感染管理質量督查評分表
- 心內電生理導管及器械
- 稱量與天平培訓試題及答案
- 超全的超濾與納濾概述、基本理論和應用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國育齡女性生殖健康研究報告
- 各種靜脈置管固定方法
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 呼吸機波形分析及臨床應用
- 常用緊固件選用指南
評論
0/150
提交評論