隨機過程matlab程序_第1頁
隨機過程matlab程序_第2頁
隨機過程matlab程序_第3頁
隨機過程matlab程序_第4頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、基本操作-5/(4.8+5.32)2area=pi*2.52x1=1+1/2+1/3+1/4+1/5+1/6exp(acos(0.3)a=123;456;789a=1:3,4:6,7:9a1=6: -1:1a=eye(4) a1=eye(2,3)b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5)d=zeros(3,2,2);r1=rand(2, 3)r2=5-10*rand(2, 3)r4=2*randn(2,3)+3arr1=1.1 -2.2 3.3 -4.4 5.5arr1(3)arr1(1 4)arr1(1:2:5)arr2=1 2 3; -2 -3 -4

2、;3 4 5arr2(1,:)arr2(:,1:2:3)arr3=1 2 3 4 5 6 7 8arr3(5:end)arr3(end)繪圖x=0:1:10;y=x.2-10*x+15;plot(x,y)x=0:pi/20:2*piy1=sin(x);y2=cos(x);plot(x,y1,'b-');hold on;plot(x,y2,-k);legend ( sin xx=0:pi/20:2*pi;y=sin(x);figure(1)plot(x,y, 'r-')grid on , cos x );以二元函數(shù)圖z = xexp(-x2-y2)為例講解基本操作

3、,首先需要利用meshgrid函數(shù)生成 X-Y 平面的網格數(shù)據(jù),如下所示:xa = -2:0.2:2;ya = xa;x,y = meshgrid(xa,ya);z = x.*exp(-x.2 - y.2);mesh(x,y,z);建立M文件functionfenshu( grade )ifgrade > 95.0disp('The grade is A.'else);ifgrade > 86.0disp('The grade is B.');elseifdisp(grade > 76.0'The grade is C.');e

4、lsedisp(ifgrade > 66.0'The grade is D.');elsedisp('The grade is F.');endendendendendfunctiony=func(x)ifabs(x)<1y=sqrt(1-x2);elsey=x2-1;endfunctionsumm( n)i = 1;sum = 0;while( i <= n )sum = sum+i;i = i+1;endstr = ' á 1a o' ,num2str(sum);disp(str)end求極限syms xlimit

5、(1+x)(1 /x),x,0,'right')求導數(shù)syms x;f=(sin(x)/x);diff(f)diff(log(sin(x)求積分syms x;int(x2*log(x)syms x;int(abs(x-1),0,2)常微分方程求解dsolve('Dy+2*x*y=x*exp(-x2)','x')計算偏導數(shù)x/(x2 + y2 + z2)(1 /2)diff(x2+y2+z2)(1 /2),x,2)重積分int(int(x*y,y,2*x,x2+1),x,0,1)級數(shù)syms n;symsum(1/2n,1,inf)Taylor 展

6、開式求 y=exp(x)在 x=0 處的 5 階 Taylor 展開式taylor(exp(x),0,6)矩陣求逆A=0 -6 -1; 6 2 -16; -5 20 -10det(A)inv(A)特征值、特征向量和特征多項式A=0 -6 -1; 6 2 -16; -5 20 -10;lambda=eig(A)v,d=eig(A)poly(A)多項式的根與計算p=10-2-5;r=roots(p)p2=poly(r)y1=polyval(p,4)例子:x=-3:3'y=3.03,3.90,4.35,4.50,4.40,4.02,3.26'A=2*x, 2*y, ones(size

7、(x);B=x.2+y.2;c=inv(A'*A)*A'*B;r=sqrt(c(3)+c(1)2+c(2)2)例子ezplot('-2/3*exp(-t)+5 /3*exp(2*t)','-2 /3*exp(-t)+2 /3*exp(2*t)',0,1)grid on;axis(0, 12, 0, 5)密度函數(shù)和概率分布設 x b(20,0.1),binopdf(2,20,0.1)分布函數(shù)設 x N(1100,502 ) , y N(1150,80 2) ,則有normcdf(1000,1100,50)=0.0228 ,1-0.0228=0.97

8、72normcdf(1000,1150,80)=0.0304, 1-0.0304=0.9696統(tǒng)計量數(shù)字特征x=29.8 27.6 28.3mean(x)max(x)min(x)std(x)syms p k;Ex=symsum(k*p*(1-p)(k-1),k,1,inf)syms x y;f=x+y;Ex=int(int(x*y*f,y,0,1),0,1)參數(shù)估計例:對某型號的 20 輛汽車記錄其 5L 汽油的行駛里程(公里) ,觀測數(shù)據(jù)如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.

9、626.9設行駛里程服從正態(tài)分布,試用最大似然估計法求總體的均值和方差。x1=29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7;x2=28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9;x=x1 x2'p=mle('norm',x);muhatmle=p(1),sigma2hatmle=p(2)2m,s,mci,sci=normfit(x,0.5)假設檢驗例:下面列出的是某工廠隨機選取的20只零部件的裝配時間(分):9.810.410.69.69.79.910.911.19

10、.610.210.39.69.911.210.69.810.510.110.59.7設裝配時間總體服從正態(tài)分布,標準差為0.4,是否認定裝配時間的均值在0.05 的水平下不小于10。解 :在正態(tài)總體的方差已知時MATLAB 均值檢驗程序:x1=9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2;x2=10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7;x=x1 x2'm=10;sigma=0.4;a=0.05;h,sig,muci=ztest(x,m,sigma,a,1)得到: h =1, ,% PPT 例

11、2 一維正態(tài)密度與二維正態(tài)密度syms x y;s=1; t=2;mu1=0; mu2=0; sigma1=sqrt(s2); sigma2=sqrt(t2);x=-6:0.1:6;f1=1/sqrt(2*pi*sigma1)*exp(-(x-mu1).2/(2*sigma12);f2=1/sqrt(2*pi*sigma2)*exp(-(x-mu2).2/(2*sigma22);plot(x,f1,'r-',x,f2,'k-.')rho=(1+s*t)/(sigma1*sigma2);f=1/(2*pi*sigma1*sigma2*sqrt(1-rho2)*ex

12、p(-1/(2*(1-rho2)*(x-mu1)2/sigma12-2*rho* (x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)% P34 例%輸出p1 =0.0671p2 =4.5400e-005ans =0.06710.0000% P40 例% 輸出p3 = 0.0874% P40 例% 輸出p4 = 6.1442e-006解微分方程% 輸入:syms p0 p1 p2 ;S=dsolve('Dp0=-lamda*p0','Dp1=-lamda*p1+lamda*p0','Dp2

13、=-lamda*p2+lamda*p1','p0(0) = 1','p1(0) = 0','p2(0) = 0');S.p0,S.p1,S.p2% 輸出:ans =exp(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*exp(-lamda*t)*t2*lamda2% P40 泊松過程仿真% simulate 10 times clear;m=10; lamda=1; x=; for i=1:ms=exprnd(lamda,'seed',1);% seed 是用來控制生成隨機數(shù)的種子 , 使得生

14、成隨機數(shù)的個數(shù)是一樣的 . x=x,exprnd(lamda);t1=cumsum(x); endx',t1'%輸出:ans =0.65090.65092.40613.05700.10023.15720.12293.28000.82334.10330.24634.34961.90746.25700.47836.73531.34478.08000.80828.8882%輸入:N=;for t=0:0.1:(t1(m)+1)if t<t1(1)N=N,0;elseif t<t1(2)N=N,1;elseif t<t1(3)N=N,2;elseif t<t1(

15、4)N=N,3;elseif t<t1(5)N=N,4;elseif t<t1(6)N=N,5;elseif t<t1(7)N=N,6;elseif t<t1(8)N=N,7;elseif t<t1(9)N=N,8;elseif t<t1(10)N=N,9;elseN=N,10;endendplot(0:0.1:(t1(m)+1),N,'r-')%輸出:% simulate 100 times clear;m=100; lamda=1; x=;for i=1:ms= rand('seed');x=x,exprnd(lamda)

16、;t1=cumsum(x);endx',t1'N=;for t=0:0.1:(t1(m)+1)if t<t1(1)N=N,0;endfor i=1:(m-1)if t>=t1(i) & t<t1(i+1)N=N,i;endendif t>t1(m)N=N,m;endendplot(0:0.1:(t1(m)+1),N,'r-')% 輸出:% P48 非齊次泊松過程仿真% simulate 10 timesclear;m=10; lamda=1; x=;fori=1:ms=rand('seed');% exprnd(l

17、amda,'seed',1 ); set seedsx=x,exprnd(lamda);t1=cumsum(x);endx',t1'N=; T=;fort=0:0.1:(t1(m)+1)T=T,t.3;% time is adjusted, cumulative intensity function is t3.ift<t1(1)N=N,0;endfori=1:(m-1)ift>=t1(i) & t<t1(i+1)N=N,i;endendift>t1(m)N=N,m;endendplot(T,N,'r-')% ou

18、tputans =0.42200.42203.33233.75430.16353.91780.06833.98610.38754.37360.27744.65100.29694.94790.93595.88380.42246.30621.76508.071210 times simulation100 times simulation% P50 復合泊松過程仿真% simulate 100 timesclear;niter=100;% iterate numberlamda=1;% arriving ratet=input('Input a time:', 's'

19、;)fori=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timet1=x;whilet1<tx=x,exprnd(lamda);t1=sum(x);% arriving timeendt1=cumsum(x);y=trnd(4,1,length(t1);% rand(1,length(t1);gamrnd(1,1/2,1,length(t1); frnd(2,10,1,length(t1);t2=cumsum(y);endx',t1',y',t2'X=; m=leng

20、th(t1);fort=0:0.1:(t1(m)+1)ift<t1(1)X=X,0;endfori=1:(m-1)ift>=t1(i) & t<t1(i+1)X=X,t2(i);endendift>t1(m)X=X,t2(m);endendplot(0:0.1:(t1(m)+1),X,'r-')跳躍度服從 0,1均勻分布情形跳躍度服從(1, 1/ 2) 分布情形跳躍度服從t ( 10)分布情形% Simulatethe probabilitythatsalesrevenue fallsin some interval.(e.g.in teachi

21、ng material)clear;niter=1.0E4;% number of iterationslamda=6;% arriving rate (unit:minute)t=720;% 12 hours=720 minutesabove=repmat(0,1,niter);% set up storagefor i=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timen=1;while x<tx=x+exprnd(1/lamda);% arriving timeif x>=tn=n;el

22、sen=n+1;endendz=binornd(200,0.5,1,n);% generate n salesy=sum(z);above(i)=sum(y>432000);endpro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson process clear;niter=1.0E3;lamda=1;% number of iterations% arriving ratet=input('Input a time:','s')below=repm

23、at(0,1,niter);% set up storagefor i=1:niterrand('state',sum(clock);x=exprnd(lamda);% interval timen=1;while x<tx=x+exprnd(lamda);% arriving timeif x>=tn=n;elsen=n+1;endendr=normrnd(0.05/253,0.23/sqrt(253),1,n); % generate n random jumps y=log(1.0E6)+cumsum(r);minX=min(y);% minmum retur

24、n over next n jumpsbelow(i)=sum(minX<log(950000);endpro=mean(below)Output: t=50, pro=0.45馬氏鏈chushivec0=0 0 1 0 0 0P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0, 0,0,0,1,0jueduivec1=chushivec0*Pjueduivec2=chushivec0*(P2)% 計算 1 到 n 步后的分布chushivec0=0 0 1 0 0 0;

25、P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=10t=1/6*ones(1 6);jueduivec=repmat(t,n 1);for k=1:njueduiveck=chushivec0*(Pk);jueduivec(k,1:6)=jueduiveckend% 比較相鄰的兩行n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% Replace the first dist

26、ribution, Comparing two neighbour absolute-vectors once more chushivec0=1/6 1/6 1/6 1/6 1/6 1/6; P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0, 0,0,0,1,0;n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% 賭博問題模擬(帶吸收壁的隨機游走:結束1次游走所花的時間及終止狀態(tài))a=5; p=1/

27、2;m=0;whilem<100m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endifa=0|a=10break ;endendm a% 賭博問題模擬(帶吸收壁的隨機游走:結束N次游走所花的平均時間及終止狀態(tài)分布規(guī)律)% p=q=1/2p=1/2;m1=0; m2=0; N=1000;t1=0;t2=0;forn=1:1:Nm=0; a=5;whilea>0 & a<10m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endendifa=0t1=t1+m; m1=m1+1;

28、elset2=t2+m; m2=m2+1;endendfprintf('The average timesof arriving0 and 10 respectivelyare %d,%d.n' ,t1/m1,t2/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N);% verify:fprintf('The probabilityof arriving0 and itsapproximaterespectivelyare %d,%

29、d.n' , 5/10,m1/N);fprintf('The expectationof arriving0 or 10 and itsapproximaterespectivelyare %d,%d.n' ,5*(10-5)/(2*p), (t1+t2)/N );% p=qp=1/4;m1=0; m2=0; N=1000;t1=zeros(1,N);t2=zeros(1,N);forn=1:1:Nm=0;a=5;whilea>0 & a<15m=m+1;r=2*binornd(1,p)-1;ifr=-1a=a-1;elsea=a+1;endendi

30、fa=0t1(1,n)=m; m1=m1+1;elset2(1,n)=m; m2=m2+1;endendfprintf('The average times of arriving 0 and 10 respectivelyare %d,%d.n',sum(t1,2)/m1,sum(t2,2)/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N);% verify:fprintf('The probability of arrivin

31、g 0 and its approximate respectively are %d,%d.n',(p10*(1-p)5-p5*(1-p)10)/(p5*(p10-(1-p)10), m1/N);fprintf('The expectation of arriving 0 or 10 and its approximate respectivelyare %d,%d.n',5/(1-2*p)-10/(1-2*p)*(1-(1-p)5/p5)/(1-(1-p)10/p10),(sum(t1,2)+sum(t2,2)/N);%連續(xù)時間馬爾可夫鏈通過 Kolmogorov

32、微分方程求轉移概率輸入:clear;syms p00 p01 p10 p11 lamda mu;P=p00,p01;p10,p11;Q=-lamda,lamda;mu,-muP*Q輸出:ans = -p00*lamda+p01*mu, p00*lamda-p01*mu -p10*lamda+p11*mu, p10*lamda-p11*mu輸入:p00,p01,p10,p11=dsolve('Dp00=-p00*lamda+p01*mu','Dp01=p00*lamda-p01*mu','Dp10=-p10*l amda+p11*mu','

33、Dp11=p10*lamda-p11*mu','p00(0)=1,p01(0)=0,p10(0)=0,p11(0)=1')輸出:p00 =mu/(mu+lamda)+exp(-t*mu-t*lamda)*lamda/(mu+lamda)p01 =(lamda*mu/(mu+lamda)-exp(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-exp(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+exp(-t*mu-t*lamda)*mu2/(m

34、u+lamda)/mu% BPATH1 Brownian path simulation: for endrandn( 'state',100)% set the state of randnT = 1; N = 500; dt = T/N;dW = zeros(1,N);% preallocate arrays .W = zeros(1,N);% for efficiencydW(1) = sqrt(dt)*randn;% first approximation outside the loop .W(1) = dW(1);% since W(0) = 0 is not allowedforj = 2:NdW(j) = sqrt(dt)*randn;% general incrementW(j) = W(j-1) + dW(j);endplot(0:dt:T,0,W,'r-')% plot W against txlabel('t',

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論