版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、西伯利亞西伯利亞9.119.11球的體積和表面積球的體積和表面積 學(xué)習(xí)球的知識要注意和圓的有關(guān)指示結(jié)合起來所以學(xué)習(xí)球的知識要注意和圓的有關(guān)指示結(jié)合起來所以我們先來回憶圓面積計算公式的導(dǎo)出方法我們先來回憶圓面積計算公式的導(dǎo)出方法球的體球的體積積 我們把一個半徑為我們把一個半徑為R的圓分成若干等分,然后如上圖重新的圓分成若干等分,然后如上圖重新拼接起來,把一個圓近似的看成是邊長分別是拼接起來,把一個圓近似的看成是邊長分別是.的的矩矩形形和和RR .2R 于于那那么么圓圓的的面面積積就就近近似似等等9.119.11球的體積和表面積球的體積和表面積當(dāng)所分份數(shù)不斷增加時,精確程度就越來越高;當(dāng)當(dāng)所分份數(shù)
2、不斷增加時,精確程度就越來越高;當(dāng)份數(shù)無窮大時,就得到了圓的面積公式份數(shù)無窮大時,就得到了圓的面積公式法法導(dǎo)導(dǎo)出出球球的的體體積積公公式式下下面面我我們們就就運運用用上上述述方方即先把半球分割成即先把半球分割成n部分,再求出每一部分的近似體積,部分,再求出每一部分的近似體積,并將這些近似值相加,得出半球的近似體積,最后考慮并將這些近似值相加,得出半球的近似體積,最后考慮n變變?yōu)闊o窮大的情形,由半球的近似體積推出準(zhǔn)確體積為無窮大的情形,由半球的近似體積推出準(zhǔn)確體積球的體球的體積積分割分割求近似和求近似和化為準(zhǔn)確和化為準(zhǔn)確和9.119.11球的體積和表面積球的體積和表面積,21RRr ,)(222
3、nRRr ,)2(223nRRr AOB2C2球的體球的體積積AO9.119.11球的體積和表面積球的體積和表面積OR)1( inR半半徑徑:層層“小小圓圓片片”下下底底面面的的第第i.,2,1,)1(22niinRRri irOA球的體球的體積積9.119.11球的體積和表面積球的體積和表面積nininRnRrVii,2,1,)1(1232 niinRRri,2,1,)1(22 nVVVV 21半球半球)1(2122223nnnnR 6) 12() 1(123 nnnnnnR 6)12)(1(1123 nnnR 球的體球的體積積9.119.11球的體積和表面積球的體積和表面積6)12)(11
4、(13nnRV 半半球球.01, nn時時當(dāng)當(dāng).343233RVRV 從從而而半半球球334RVR的球的體積為:定理:半徑是球的體球的體積積9.119.11球的體積和表面積球的體積和表面積R.34,32:33RVRV 從從而而猜猜測測半半球球? 半球半球V331RV 圓錐圓錐333RV 圓柱圓柱高等于底面半徑的旋轉(zhuǎn)體體積對比高等于底面半徑的旋轉(zhuǎn)體體積對比球的體球的體積積9.119.11球的體積和表面積球的體積和表面積例例1.1.鋼球直徑是鋼球直徑是5cm,5cm,求它的體積求它的體積. .3336125)25(3434cmRV (變式變式1 1)一種空心鋼球的質(zhì)量是一種空心鋼球的質(zhì)量是142g
5、,142g,外徑是外徑是5cm,5cm,求它求它的內(nèi)徑的內(nèi)徑.( .(鋼的密度是鋼的密度是7.9g/cm7.9g/cm2 2) )例題講解例題講解19.119.11球的體積和表面積球的體積和表面積(變式變式1 1)一種空心鋼球的質(zhì)量是一種空心鋼球的質(zhì)量是142g,142g,外徑是外徑是5cm,5cm,求它求它的內(nèi)徑的內(nèi)徑.( .(鋼的密度是鋼的密度是7.9g/cm7.9g/cm2 2,精確到,精確到0.10.1cmcm)解解:設(shè)空心鋼球的內(nèi)徑為設(shè)空心鋼球的內(nèi)徑為2xcm,則鋼球的質(zhì)量是則鋼球的質(zhì)量是答答:空心鋼球的內(nèi)徑約為空心鋼球的內(nèi)徑約為4.5cm.14234)25(349.733 x 3.
6、1149.73142)25(33 x由計算器算得由計算器算得:24. 2 x5 . 42 x例題講解例題講解19.119.11球的體積和表面積球的體積和表面積2)2)若每小塊表面看作一個平面若每小塊表面看作一個平面, ,將每小塊平面作為底面將每小塊平面作為底面, ,球心作為球心作為頂點便得到頂點便得到n n個棱錐個棱錐, ,這些棱錐體積之和近似為球的體積這些棱錐體積之和近似為球的體積. .當(dāng)當(dāng)n n越大越大, ,越接近于球的體積越接近于球的體積, ,當(dāng)當(dāng)n n趨近于無窮大時就精確到等于球的體積趨近于無窮大時就精確到等于球的體積. .1) 1)球的表面是曲面球的表面是曲面, ,不是平面不是平面,
7、 ,但如果將表面平均分割成但如果將表面平均分割成n n個小塊個小塊, ,每小塊表面可近似看作一個平面每小塊表面可近似看作一個平面, ,這這n n小塊平面面積之和可近似小塊平面面積之和可近似看作球的表面積看作球的表面積. .當(dāng)當(dāng)n n趨近于無窮大時趨近于無窮大時, ,這這n n小塊平面面積之和接小塊平面面積之和接近于甚至等于球的表面積近于甚至等于球的表面積. . 球面不能展開成平面圖形,所以求球的表面積無法用展開圖球面不能展開成平面圖形,所以求球的表面積無法用展開圖求出,如何求球的表面積公式呢求出,如何求球的表面積公式呢? ?回憶球的體積公式的推導(dǎo)方法回憶球的體積公式的推導(dǎo)方法, ,是否也可借助
8、于這種是否也可借助于這種極限極限思想方法來推導(dǎo)球的表面積公式呢思想方法來推導(dǎo)球的表面積公式呢? ? 下面,我們再次運用這種方法來推導(dǎo)球的表面積公式下面,我們再次運用這種方法來推導(dǎo)球的表面積公式球的表面積球的表面積9.119.11球的體積和表面積球的體積和表面積oiS o球的表面積球的表面積9.119.11球的體積和表面積球的體積和表面積第第一一步:步:分分割割球面被分割成球面被分割成n n個網(wǎng)格,表面積分別為:個網(wǎng)格,表面積分別為:nSSSS ,321,則球的表面積:則球的表面積:nSSSSS 321則球的體積為:則球的體積為:iV 設(shè)“小錐體”的體積為設(shè)“小錐體”的體積為iVnVVVVV 3
9、21iSO OO O球的表面積球的表面積9.119.11球的體積和表面積球的體積和表面積第第二二步:步:求求近近似似和和ih由第一步得:由第一步得:nVVVVV 321nnhShShShSV 31313131332211 iiihSV 31 O OiSiVO O球的表面積球的表面積9.119.11球的體積和表面積球的體積和表面積第第三三步:步:化化為為準(zhǔn)準(zhǔn)確確和和RSVii31 如果網(wǎng)格分的越細(xì)如果網(wǎng)格分的越細(xì), ,則則: “: “小小錐體錐體”就越接近小棱錐就越接近小棱錐RSRSRSRSVni 3131313132 RSSSSSRni31).(3132 334RV 又又球球的的體體積積為為:
10、RiS iVihiSO OiV234,3134RSRSR 從從而而球的表面積球的表面積Rhi的的值值就就趨趨向向于于球球的的半半徑徑 9.119.11球的體積和表面積球的體積和表面積( (變式變式2) 2)把鋼球恰好放入一個正方體的有蓋紙把鋼球恰好放入一個正方體的有蓋紙盒中盒中, ,至少要用多少紙至少要用多少紙? ?用料最省時用料最省時, ,球與正方體有什么位置關(guān)系球與正方體有什么位置關(guān)系? ?球內(nèi)切于正方體球內(nèi)切于正方體2215056cmS 側(cè)側(cè)側(cè)棱長為側(cè)棱長為5cm例題講解例題講解29.119.11球的體積和表面積球的體積和表面積例例2.2.如圖,正方體如圖,正方體ABCD-AABCD-A
11、1 1B B1 1C C1 1D D1 1的棱長為的棱長為a,a,它的各它的各個頂點都在球個頂點都在球O O的球面上,問球的球面上,問球O O的表面積。的表面積。A AB BC CD DD D1 1C C1 1B B1 1A A1 1O O分析:正方體內(nèi)接于球,則由球和正方分析:正方體內(nèi)接于球,則由球和正方體都是中心對稱圖形可知,它們中心重體都是中心對稱圖形可知,它們中心重合,則正方體對角線與球的直徑相等。合,則正方體對角線與球的直徑相等。22222113423,)2()2(:aRSaRaaRDDBRt 得得中中略略解解:A AB BC CD DD D1 1C C1 1B B1 1A A1 1
12、O O例題講解例題講解29.119.11球的體積和表面積球的體積和表面積OABCO 例已知過球面上三點例已知過球面上三點A、B、C的截面到球心的截面到球心O的距的距離等于球半徑的一半,且離等于球半徑的一半,且AB=BC=CA=cm,求球的,求球的體積,表面積體積,表面積解:如圖,設(shè)球解:如圖,設(shè)球O半徑為半徑為R,截面截面 O的半徑為的半徑為r,r332AB2332AO 是正三角形,是正三角形,ABCROO ,2 例題講解例題講解29.119.11球的體積和表面積球的體積和表面積.34R .96491644S2 R,)332()2R(R222 OABCO ,222AOOOOAAOORt 中中解
13、解:在在 ;81256)34(343433 RV例例.已知過球面上三點已知過球面上三點A、B、C的截面到球心的截面到球心O的距離的距離等于球半徑的一半,且等于球半徑的一半,且AB=BC=CA=cm,求球的體積,求球的體積,表面積表面積例題講解例題講解29.119.11球的體積和表面積球的體積和表面積l了解球的體積、表面積推導(dǎo)的基本思路:了解球的體積、表面積推導(dǎo)的基本思路:分割分割求近似和求近似和化為標(biāo)準(zhǔn)和的方法,是化為標(biāo)準(zhǔn)和的方法,是一種重要的數(shù)學(xué)思想方法一種重要的數(shù)學(xué)思想方法極限思想,它極限思想,它是今后要學(xué)習(xí)的微積分部分是今后要學(xué)習(xí)的微積分部分“定積分定積分”內(nèi)內(nèi)容的一個應(yīng)用;容的一個應(yīng)用
14、;l熟練掌握球的體積、表面積公式:熟練掌握球的體積、表面積公式:23434RSRV 課堂小結(jié)課堂小結(jié)9.119.11球的體積和表面積球的體積和表面積課堂作業(yè)課堂作業(yè)習(xí)題習(xí)題9.11 P.74 5、6 、7、8預(yù)習(xí)小結(jié)與復(fù)習(xí)預(yù)習(xí)小結(jié)與復(fù)習(xí)P.75P.779.119.11球的體積和表面積球的體積和表面積2.一個正方體的頂點都在球面上一個正方體的頂點都在球面上,它的棱長是它的棱長是4cm,這個球的體積為這個球的體積為cm3. 8 3323.有三個球有三個球,一球切于正方體的各面一球切于正方體的各面,一球切于一球切于正方體的各側(cè)棱正方體的各側(cè)棱,一球過正方體的各頂點一球過正方體的各頂點,求這求這三個球
15、的體積之比三個球的體積之比_.1.球的直徑伸長為原來的球的直徑伸長為原來的2倍倍,體積變?yōu)樵瓉淼谋扼w積變?yōu)樵瓉淼谋?練習(xí)一練習(xí)一課堂練習(xí)課堂練習(xí)33:22:19.119.11球的體積和表面積球的體積和表面積4.4.若兩球體積之比是若兩球體積之比是1:21:2,則其表面積之比是,則其表面積之比是_. .練習(xí)二練習(xí)二2422:134:11.若球的表面積變?yōu)樵瓉淼娜羟虻谋砻娣e變?yōu)樵瓉淼?倍倍,則半徑變?yōu)樵瓉淼膭t半徑變?yōu)樵瓉淼腳倍倍.2.若球半徑變?yōu)樵瓉淼娜羟虬霃阶優(yōu)樵瓉淼?倍,則表面積變?yōu)樵瓉淼谋?,則表面積變?yōu)樵瓉淼腳倍倍.3.若兩球表面積之比為若兩球表面積之比為1:2,則其體積之比是,則其體積之比是_.課堂練習(xí)課堂練習(xí)9.119.11球的體積和表面積球的體積和表面積7.7.將半徑為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《大學(xué)英語聽力應(yīng)用教程(第1冊)》課件-Unit 14 The Population Growth in the World
- 《蔬菜品質(zhì)與安全》課件
- 2025年萍鄉(xiāng)貨運從業(yè)資格證考試內(nèi)容
- 《FX基礎(chǔ)課程》課件
- 2025年安慶考從業(yè)資格證貨運試題
- 金融服務(wù)學(xué)徒管理辦法
- 惠州市工具租賃合同
- 美甲師崗位聘用協(xié)議書
- 生態(tài)修復(fù)區(qū)轉(zhuǎn)讓
- 珠寶店暖氣管道維修施工合同
- 中儲糧西安分公司招聘真題
- 大學(xué)人工智能期末考試題庫
- 2024土方開挖工程合同范本
- 建筑幕墻工程檢測知識考試題庫500題(含答案)
- 企業(yè)綠色供應(yīng)鏈管理咨詢服務(wù)合同
- 食品安全事故專項應(yīng)急預(yù)案演練記錄6篇匯編(表格式)
- 2025年會計基礎(chǔ)知識考試題庫附答案
- 《資治通鑒》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年統(tǒng)編版新教材語文小學(xué)一年級上冊全冊單元測試題及答案(共8單元)
- 企業(yè)年會的活動策劃方案
- 可降解包裝材料采購合作合同
評論
0/150
提交評論