版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中函數(shù)大題專練、已知關(guān)于的不等式,其中。試求不等式的解集;對于不等式的解集,若滿足(其中為整數(shù)集)。試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由。、對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù)。 對任意的,總有; 當(dāng)時,總有成立。已知函數(shù)與是定義在上的函數(shù)。(1)試問函數(shù)是否為函數(shù)?并說明理由;(2)若函數(shù)是函數(shù),求實數(shù)的值;(3)在(2)的條件下,討論方程解的個數(shù)情況。3.已知函數(shù). (1)若,求的值;(2)若對于恒成立,求實數(shù)的取值范圍.4.設(shè)函數(shù)是定義在上的偶函數(shù).若當(dāng)時,(1)求在上的解析
2、式.(2)請你作出函數(shù)的大致圖像.(3)當(dāng)時,若,求的取值范圍.(4)若關(guān)于的方程有7個不同實數(shù)解,求滿足的條件.5已知函數(shù)。 (1)若函數(shù)是上的增函數(shù),求實數(shù)的取值范圍; (2)當(dāng)時,若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍; (3)對于函數(shù)若存在區(qū)間,使時,函數(shù)的值域也是,則稱是上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應(yīng)滿足的條件。6、設(shè),求滿足下列條件的實數(shù)的值:至少有一個正實數(shù),使函數(shù)的定義域和值域相同。7對于函數(shù),若存在 ,使成立,則稱點為函數(shù)的不動點。(1)已知函數(shù)有不動點(1,1)和(-3,-3)求與的值;(2)若對于任意實數(shù),函數(shù)總有兩個相異的不動點,求的取值范圍;(3)若
3、定義在實數(shù)集R上的奇函數(shù)存在(有限的) 個不動點,求證:必為奇數(shù)。8設(shè)函數(shù)的圖象為、關(guān)于點A(2,1)的對稱的圖象為,對應(yīng)的函數(shù)為. (1)求函數(shù)的解析式; (2)若直線與只有一個交點,求的值并求出交點的坐標(biāo).9設(shè)定義在上的函數(shù)滿足下面三個條件:對于任意正實數(shù)、,都有; ;當(dāng)時,總有. (1)求的值; (2)求證:上是減函數(shù).10 已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,(為常數(shù))。(1)求函數(shù)的解析式;(2)當(dāng)時,求在上的最小值,及取得最小值時的,并猜想在上的單調(diào)遞增區(qū)間(不必證明);(3)當(dāng)時,證明:函數(shù)的圖象上至少有一個點落在直線上。11.記函數(shù)的定義域為,的定義域為,(1)求: (2)若,求
4、、的取值范圍12、設(shè)。(1)求的反函數(shù): (2)討論在上的單調(diào)性,并加以證明:(3)令,當(dāng)時,在上的值域是,求 的取值范圍。13集合A是由具備下列性質(zhì)的函數(shù)組成的:(1) 函數(shù)的定義域是; (2) 函數(shù)的值域是;(3) 函數(shù)在上是增函數(shù)試分別探究下列兩小題:()判斷函數(shù),及是否屬于集合A?并簡要說明理由()對于(I)中你認(rèn)為屬于集合A的函數(shù),不等式,是否對于任意的總成立?若不成立,為什么?若成立,請證明你的結(jié)論14、設(shè)函數(shù)f(x)=ax+bx+1(a,b為實數(shù)),F(x)=(1)若f(-1)=0且對任意實數(shù)x均有f(x)成立,求F(x)表達(dá)式。(2)在(1)的條件下,當(dāng)x時,g(x)=f(x)
5、-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍。(3)(理)設(shè)m>0,n<0且m+n>0,a>0且f(x)為偶函數(shù),求證:F(m)+F(n)>0。15函數(shù)f(x)=(a,b是非零實常數(shù)),滿足f(2)=1,且方程f(x)=x有且僅有一個解。(1)求a、b的值; (2)是否存在實常數(shù)m,使得對定義域中任意的x,f(x)+f(mx)=4恒成立?為什么?(3)在直角坐標(biāo)系中,求定點A(3,1)到此函數(shù)圖象上任意一點P的距離|AP|的最小值。函數(shù)大題專練答案、已知關(guān)于的不等式,其中。試求不等式的解集;對于不等式的解集,若滿足(其中為整數(shù)集)。試探究集合能否為有限集?若能,求出使得集
6、合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由。解:(1)當(dāng)時,;當(dāng)且時,;當(dāng)時,;(不單獨分析時的情況不扣分)當(dāng)時,。(2) 由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集。因為,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,集合的元素個數(shù)最少。此時,故集合。、對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù)。 對任意的,總有; 當(dāng)時,總有成立。已知函數(shù)與是定義在上的函數(shù)。(1)試問函數(shù)是否為函數(shù)?并說明理由;(2)若函數(shù)是函數(shù),求實數(shù)的值;(3)在(2)的條件下,討論方程解的個數(shù)情況。解:(1) 當(dāng)時,總有,滿足, 當(dāng)時,滿足 (2)若時,不
7、滿足,所以不是函數(shù);若時,在上是增函數(shù),則,滿足 由 ,得,即, 因為 所以 與不同時等于1 當(dāng)時, , 綜合上述:(3)根據(jù)()知:a=1,方程為, 由得 令,則 由圖形可知:當(dāng)時,有一解;當(dāng)時,方程無解。 .已知函數(shù). (1)若,求的值;(2)若對于恒成立,求實數(shù)的取值范圍.解 (1)當(dāng)時,;當(dāng)時,. 由條件可知 ,即 ,解得 .,. (2)當(dāng)時,即 ., ., 故的取值范圍是.設(shè)函數(shù)是定義在上的偶函數(shù).若當(dāng)時,(1)求在上的解析式.(2)請你作出函數(shù)的大致圖像.(3)當(dāng)時,若,求的取值范圍.(4)若關(guān)于的方程有7個不同實數(shù)解,求滿足的條件.解(1)當(dāng)時,.(2)的大致圖像如下:. (3)
8、因為,所以,解得的取值范圍是.(4)由(2),對于方程,當(dāng)時,方程有3個根;當(dāng)時,方程有4個根,當(dāng)時,方程有2個根;當(dāng)時,方程無解.15分所以,要使關(guān)于的方程有7個不同實數(shù)解,關(guān)于的方程有一個在區(qū)間的正實數(shù)根和一個等于零的根。所以,即.已知函數(shù)。 (1)若函數(shù)是上的增函數(shù),求實數(shù)的取值范圍; (2)當(dāng)時,若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍; (3)對于函數(shù)若存在區(qū)間,使時,函數(shù)的值域也是,則稱是上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應(yīng)滿足的條件。解:(1) 當(dāng)時,設(shè)且,由是上的增函數(shù),則由,知,所以,即 (2)當(dāng)時,在上恒成立,即因為,當(dāng)即時取等號,所以在上的最小值為。則(3) 因
9、為的定義域是,設(shè)是區(qū)間上的閉函數(shù),則且(4) 若當(dāng)時,是上的增函數(shù),則,所以方程在上有兩不等實根,即在上有兩不等實根,所以,即且當(dāng)時,在上遞減,則,即,所以若當(dāng)時,是上的減函數(shù),所以,即,所以、設(shè),求滿足下列條件的實數(shù)的值:至少有一個正實數(shù),使函數(shù)的定義域和值域相同。解:(1)若,則對于每個正數(shù),的定義域和值域都是故滿足條件 (2)若,則對于正數(shù),的定義域為, 但的值域,故,即不合條件; (3)若,則對正數(shù),定義域 ,的值域為, 綜上所述:的值為0或 對于函數(shù),若存在 ,使成立,則稱點為函數(shù)的不動點。(1)已知函數(shù)有不動點(1,1)和(-3,-3)求與的值;(2)若對于任意實數(shù),函數(shù)總有兩個相
10、異的不動點,求的取值范圍;(3)若定義在實數(shù)集R上的奇函數(shù)存在(有限的) 個不動點,求證:必為奇數(shù)。解:(1)由不動點的定義:,代入知,又由及知。 ,。(2)對任意實數(shù),總有兩個相異的不動點,即是對任意的實數(shù),方程總有兩個相異的實數(shù)根。中,即恒成立。故,。故當(dāng)時,對任意的實數(shù),方程總有兩個相異的不動點。 .1(3)是R上的奇函數(shù),則,(0,0)是函數(shù)的不動點。若有異于(0,0)的不動點,則。又,是函數(shù)的不動點。的有限個不動點除原點外,都是成對出現(xiàn)的, 所以有個(),加上原點,共有個。即必為奇數(shù) 設(shè)函數(shù)的圖象為、關(guān)于點A(2,1)的對稱的圖象為,對應(yīng)的函數(shù)為. (1)求函數(shù)的解析式; (2)若直
11、線與只有一個交點,求的值并求出交點的坐標(biāo).解(1)設(shè)是上任意一點, 設(shè)P關(guān)于A(2,1)對稱的點為 代入得 (2)聯(lián)立或 (1)當(dāng)時得交點(3,0); (2)當(dāng)時得交點(5,4).9設(shè)定義在上的函數(shù)滿足下面三個條件:對于任意正實數(shù)、,都有; ;當(dāng)時,總有. (1)求的值; (2)求證:上是減函數(shù).解(1)取a=b=1,則 又. 且.得: (2)設(shè)則: 依再依據(jù)當(dāng)時,總有成立,可得 即成立,故上是減函數(shù)。10 已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,(為常數(shù))。(1)求函數(shù)的解析式;(2)當(dāng)時,求在上的最小值,及取得最小值時的,并猜想在上的單調(diào)遞增區(qū)間(不必證明);(3)當(dāng)時,證明:函數(shù)的圖象上至少有
12、一個點落在直線上。解:(1)時, 則 , 函數(shù)是定義在上的奇函數(shù),即,即 ,又可知 ,函數(shù)的解析式為 ,;(2), ,即 時, 。猜想在上的單調(diào)遞增區(qū)間為。(3)時,任取, 在上單調(diào)遞增,即,即,當(dāng)時,函數(shù)的圖象上至少有一個點落在直線上。11.記函數(shù)的定義域為,的定義域為,(1)求: (2)若,求、的取值范圍解:(1),(2),由,得,則,即, 。12、設(shè)。(1)求的反函數(shù): (2)討論在上的單調(diào)性,并加以證明:(3)令,當(dāng)時,在上的值域是,求 的取值范圍。解:(1) (2)設(shè),時,在上是減函數(shù):時,在上是增函數(shù)。(3)當(dāng)時,在上是減函數(shù), ,由得,即, 可知方程的兩個根均大于,即,當(dāng)時,在上
13、是增函數(shù),(舍去)。 綜上,得 。13集合A是由具備下列性質(zhì)的函數(shù)組成的:(1) 函數(shù)的定義域是; (2) 函數(shù)的值域是;(3) 函數(shù)在上是增函數(shù)試分別探究下列兩小題:()判斷函數(shù),及是否屬于集合A?并簡要說明理由()對于(I)中你認(rèn)為屬于集合A的函數(shù),不等式,是否對于任意的總成立?若不成立,為什么?若成立,請證明你的結(jié)論解:(1)函數(shù)不屬于集合A. 因為的值域是,所以函數(shù)不屬于集合A.(或,不滿足條件.)在集合A中, 因為: 函數(shù)的定義域是; 函數(shù)的值域是; 函數(shù)在上是增函數(shù)(2),對于任意的總成立14、設(shè)函數(shù)f(x)=ax+bx+1(a,b為實數(shù)),F(x)=(1)若f(-1)=0且對任意
14、實數(shù)x均有f(x)成立,求F(x)表達(dá)式。(2)在(1)的條件下,當(dāng)x時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍。(3)(理)設(shè)m>0,n<0且m+n>0,a>0且f(x)為偶函數(shù),求證:F(m)+F(n)>0。解:(1)f(-1)=0 由f(x)0恒成立 知=b-4a=(a+1)-4a=(a-1)0 a=1從而f(x)=x+2x+1 F(x)= ,(2)由(1)可知f(x)=x+2x+1 g(x)=f(x)-kx=x+(2-k)x+1,由于g(x)在上是單調(diào)函數(shù),知-或-,得k-2或k6 ,(3)f(x)是偶函數(shù),f(x)=f(x),而a>
15、0在上為增函數(shù)對于F(x),當(dāng)x>0時-x<0,F(xiàn)(-x)=-f(-x)=-f(x)=-F(x),當(dāng)x<0時-x>0,F(xiàn)(-x)=f(-x)=f(x)=-F(x),F(xiàn)(x)是奇函數(shù)且F(x)在上為增函數(shù),m>0,n<0,由m>-n>0知F(m)>F(-n)F(m)>-F(n)F(m)+F(n)>0 。15函數(shù)f(x)=(a,b是非零實常數(shù)),滿足f(2)=1,且方程f(x)=x有且僅有一個解。(1)求a、b的值; (2)是否存在實常數(shù)m,使得對定義域中任意的x,f(x)+f(mx)=4恒成立?為什么?(3)在直角坐標(biāo)系中,求定點
16、A(3,1)到此函數(shù)圖象上任意一點P的距離|AP|的最小值。解 (1)由f(2)=1得2a+b=2,又x=0一定是方程=x的解,所以=1無解或有解為0,若無解,則ax+b=1無解,得a=0,矛盾,若有解為0,則b=1,所以a=。 (2)f(x)=,設(shè)存在常數(shù)m,使得對定義域中任意的x,f(x)+f(mx)=4恒成立,取x=0,則f(0)+f(m0)=4,即=4,m= 4(必要性),又m= 4時,f(x)+f(4x)=4成立(充分性) ,所以存在常數(shù)m= 4,使得對定義域中任意的x,f(x)+f(mx)=4恒成立, (3)|AP|2=(x+3)2+()2,設(shè)x+2=t,t0, 則|AP|2=(t+1)2+()2=t2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024美團外賣店配送時效及服務(wù)質(zhì)量合同3篇
- 2025年度體育用品代銷及賽事贊助合同4篇
- 2025年度別墅庭院景觀照明節(jié)能改造與維護合同3篇
- 2024玉石行業(yè)區(qū)塊鏈技術(shù)應(yīng)用與合作合同集錦3篇
- 2024版事業(yè)單位續(xù)簽勞動合同申請書
- 2025年度物流運輸代理服務(wù)合同標(biāo)準(zhǔn)范本4篇
- 2025年度智能電網(wǎng)用電安全出租房屋合同范本4篇
- 2025年分公司設(shè)立與市場開發(fā)合作協(xié)議書4篇
- 建筑垃圾再利用可行性研究報告x
- 2025年電子商務(wù)平臺租賃續(xù)租服務(wù)協(xié)議3篇
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 人教版二年級下冊口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 2024年度國家社會科學(xué)基金項目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計
- 如何避免護理患者投訴
評論
0/150
提交評論