利用SPSS進(jìn)行量表分析參考模板_第1頁
利用SPSS進(jìn)行量表分析參考模板_第2頁
利用SPSS進(jìn)行量表分析參考模板_第3頁
利用SPSS進(jìn)行量表分析參考模板_第4頁
利用SPSS進(jìn)行量表分析參考模板_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、 第五節(jié)  利用SPSS進(jìn)行量表分析  在第五章調(diào)查研究中,我們介紹了量表的類型、編制的步驟及其應(yīng)用,在本節(jié)將介紹利用SPSS軟件對量表進(jìn)行處理分析。在獲取原始數(shù)據(jù)后,我們利用SPSS對量表可以作出三種分析,即項目分析、因素分析和信度分析。項目分析,目的是找出未達(dá)顯著水準(zhǔn)的題項并把它刪除。它是通過將獲得的原始數(shù)據(jù)求出量表中題項的臨界比率值CR值來作出判斷。通常,量表的制作是要經(jīng)過專家的設(shè)計與審查,因此,題項一般均具有鑒別度,能夠鑒別不同受試者的反應(yīng)程度。故往往在量表處理中可以省去這一步。 因素分析,目的是在多變量系統(tǒng)中,把多個很難解釋,而彼此有關(guān)的變量,轉(zhuǎn)化成少數(shù)

2、有概念化意義而彼此獨立性大的因素,從而分析多個因素的關(guān)系。在具體應(yīng)用時,大多數(shù)采用“主成份因素分析”法,它是因素分析中最常使用的方法。信度分析,目的是對量表的可靠性與有效性進(jìn)行檢驗。如果一個量表的信度愈高,代表量表愈穩(wěn)定。也就表示受試者在不同時間測量得分的一致性,因而又稱“穩(wěn)定系數(shù)”。根據(jù)不同專家的觀點,量表的信度系數(shù)如果在0.9以上,表示量表的信度甚佳。但是對于可接受的最小信度系數(shù)值是多少,許多專家的看法也不一致,有些專家定為0.8以上,也有的專家定位0.7以上。通常認(rèn)為,如果研究者編制的量表的信度過低,如在0.6以下,應(yīng)以重新編制較為適宜。在本節(jié)中,主要介紹利用SPSS軟件對量表進(jìn)行因素分

3、析。 一、因素分析基本原理因素分析是通過求出量表的“結(jié)構(gòu)效度”來對量表中因素關(guān)系作出判斷。在多變量關(guān)系中,變量間線性組合對表現(xiàn)或解釋每個層面變異數(shù)非常有用,主成份分析主要目的即在此。變量的第一個線性組合可以解釋最大的變異量,排除前述層次,第二個線性組合可以解釋次大的變異量,最后一個成份所能解釋總變異量的部份會較少。主成份數(shù)據(jù)分析中,以較少成份解釋原始變量變異量較大部份。成份變異量通常用“特征值”表示,有時也稱“特性本質(zhì)”或“潛在本質(zhì)”。因素分析是一種潛在結(jié)構(gòu)分析法,其模式理論中,假定每個指針(外在變量或稱題項)均由兩部分所構(gòu)成,一為“共同因素”、一為“唯一因素”。共同因素的數(shù)目會比指針數(shù)(原始

4、變量數(shù))還少,而每個指針或原始變量皆有一個唯一因素,亦即一份量表共有n個題項數(shù),則會有n個唯一因素。唯一因素性質(zhì)有兩個假定:(1)所有的唯一因素彼此間沒有相關(guān);(2)所有的唯一因素與所有的共同因素間也沒有相關(guān)。至于所有共同因素間彼此的關(guān)系,可能有相關(guān)或可能皆沒有相關(guān)。在直交轉(zhuǎn)軸狀態(tài)下,所有的共同因素間彼此沒有相關(guān);在斜交轉(zhuǎn)軸情況下,所有的共同因素間彼此就有相關(guān)。因素分析最常用的理論模式如下:2 / 19 其中(1)為第i個變量的標(biāo)準(zhǔn)化分?jǐn)?shù)。(2)Fm為共同因素。(3)m為所有變量共同因素的數(shù)目。(4)為變量的唯一因素(5)為因素負(fù)荷量。因素分析的理想情況,在于個別因素負(fù)荷量不是很大就

5、是很小,這樣每個變量才能與較少的共同因素產(chǎn)生密切關(guān)聯(lián),如果想要以最少的共同因素數(shù)來解釋變量間的關(guān)系程度,則彼此間或與共同因素間就不能有關(guān)聯(lián)存在。-所謂的因素負(fù)荷量,是因素結(jié)構(gòu)中原始變量與因素分析時抽取出共同因素的相關(guān)。在因素分析中,有兩個重要指針:一為“共同性”,二為“特征值”。 -所謂共同性,就是每個變量在每個共同因素之負(fù)荷量的平方總和(一橫列中所有因素負(fù)荷量的平方和),也就是個別變量可以被共同因素解釋的變異量百分比,這個值是個別變量與共同因素間多元相關(guān)的平方。從共同性的大小可以判斷這個原始變量與共同因素間之關(guān)系程度。而各變量的唯一因素大小就是1減掉該變量共同性的值。(在主成份分析中,有多少

6、個原始變量便有多少個成份,所以共同性會等于1,沒有唯一因素)。 -所謂特征值,是每個變量在某一共同因素之因素負(fù)荷量的平方總和(一直行所有因素負(fù)荷量的平方和)。在因素分析的共同因素抽取中,特征值最大的共同因素會最先被抽取,其次是次大者,最后抽取得共同因素的特征值最小,通常會接近0(在主成份分析中,有幾個題項,便有幾個成份,因而特征值的總和剛好等于變量的總數(shù))。將每個共同因素的特征值除以總題數(shù),為此共同因素可以解釋的變異量,因素分析的目的之一,即在因素結(jié)構(gòu)的簡單化,希望以最少的共同因素,能對總變異量作最大的解釋,因而抽取得因素愈少愈好,但抽取因素的累積解釋的變異量愈大愈好。我們通過一個例子說明如何

7、利用SPSS軟件對量表進(jìn)行分析。 二、利用SPSS對量表進(jìn)行因素分析【例6-9】 現(xiàn)要對遠(yuǎn)程學(xué)習(xí)者對教育技術(shù)資源的了解和使用情況進(jìn)行了解,設(shè)計一個里克特量表,如表6-27所示。   將該量表發(fā)放給20人回答,假設(shè)回收后的原始數(shù)據(jù)如表6-28所示。操作步驟: 錄入數(shù)據(jù)定義變量“A1”、“A2”、“A3”、“A5”、“A6”、“A7”、“A8”、“A9”、“A10”,并按照表  輸入數(shù)據(jù),如圖6-33所示。 因素分析(1)選擇“AnalyzeData ReductionFactor”命令,彈出“Factor Analyze”對話框,將變量“A1”到

8、“A10”選入“Variables”框中,如圖6-34所示。(2)設(shè)置描述性統(tǒng)計量單擊圖6-34對話框中的“Descriptives”按鈕,彈出“Factor Analyze:Descriptives”(因素分析:描述性統(tǒng)計量)對話框,如圖6-35所示。 “Statistics”(統(tǒng)計量)對話框A “Univariate descriptives”(單變量描述性統(tǒng)計量):顯示每一題項的平均數(shù)、標(biāo)準(zhǔn)差。B “Initial solution”(未轉(zhuǎn)軸之統(tǒng)計量):顯示因素分析未轉(zhuǎn)軸前之共同性、特征值、變異數(shù)百分比及累積百分比。 “Correlation Matric”(相關(guān)矩陣)選項框A “Coe

9、fficients”(系數(shù)):顯示題項的相關(guān)矩陣B “Significance levels”(顯著水準(zhǔn)):求出前述相關(guān)矩陣地顯著水準(zhǔn)。C “Determinant”(行列式):求出前述相關(guān)矩陣地行列式值。D “KMO and Bartletts test of sphericity”(KMO與Bartlett的球形檢定):顯示KMO抽樣適當(dāng)性參數(shù)與Bartletts的球形檢定。E “Inverse”(倒數(shù)模式):求出相關(guān)矩陣的反矩陣。F “Reproduced”(重制的):顯示重制相關(guān)矩陣,上三角形矩陣代表殘差值;而主對角線及下三角形代表相關(guān)系數(shù)。G “Anti-image”(反映像):求出

10、反映像的共變量及相關(guān)矩陣。在本例中,選擇“Initial solution”與“KMO and Bartletts test of sphericity”二項,單擊“Continue”按鈕確定。(3)設(shè)置對因素的抽取選項單擊圖6-34對話框中的“Extraction”按鈕,彈出“Factor Analyze:Extraction”(因素分析:抽?。υ捒?,如圖6-36所示。  “Method”(方法)選項框:下拉式選項內(nèi)有其中抽取因素的方法:A “Principal components”法:主成份分析法抽取因素,此為SPSS默認(rèn)方法。B “Unweighted least squa

11、res”法:未加權(quán)最小平方法。C “Generalized least square”法:一般化最小平方法。D “Maximum likelihood”法:最大概似法。E “Principal-axis factoring”法:主軸法。F “Alpha factoring”法:因素抽取法。G “Image factoring”法:映像因素抽取法。 “Analyze”(分析)選項框A “Correlation matrix”(相關(guān)矩陣):以相關(guān)矩陣來抽取因素B “Covariance matrix”(共變異數(shù)矩陣):以共變量矩陣來抽取因素。 “Display”(顯示)選項框A “Unrotate

12、d factor solution”(未旋轉(zhuǎn)因子解):顯示未轉(zhuǎn)軸時因素負(fù)荷量、特征值及共同性。B “Scree plot”(陡坡圖):顯示陡坡圖。 “Extract”(抽?。┻x項框A “Eigenvalues over”(特征值):后面的空格默認(rèn)為1,表示因素抽取時,只抽取特征值大于1者,使用者可隨意輸入0至變量總數(shù)之間的值。B “Number of factors”(因子個數(shù)):選取此項時,后面的空格內(nèi)輸入限定的因素個數(shù)。在本例中,設(shè)置因素抽取方法為“Principal components”,選取“Correlation matrix”、“Unrotated factor solution

13、”、“Principal components”選項,在抽取因素時限定在特征值大于1者,即SPSS的默認(rèn)選項。單擊“Continue”按鈕確定。(4)設(shè)置因素轉(zhuǎn)軸單擊圖6-34對話框中的“Rotation”按鈕,彈出“Factor Analyze:Rotation”(因素分析:旋轉(zhuǎn))對話框,如圖6-37所示。  “Method”(方法)選項方框內(nèi)六種因素轉(zhuǎn)軸方法:A “None”:不需要轉(zhuǎn)軸B “Varimax”:最大變異法,屬正交轉(zhuǎn)軸法之一。C “Quartimax”:四次方最大值法,屬正交轉(zhuǎn)軸法之一。D “Equamax”:相等最大值法,屬正交轉(zhuǎn)軸法之一。E “Direct Ob

14、limin”:直接斜交轉(zhuǎn)軸法,屬斜交轉(zhuǎn)軸法之一。F “Promax”:Promax轉(zhuǎn)軸法,屬斜交轉(zhuǎn)軸法之一。 “Display”(顯示)選項框:A “Rotated solution”(轉(zhuǎn)軸后的解):顯示轉(zhuǎn)軸后的相關(guān)信息,正交轉(zhuǎn)軸顯示因素組型矩陣及因素轉(zhuǎn)換矩陣;斜交轉(zhuǎn)軸則顯示因素組型、因素結(jié)構(gòu)矩陣與因素相關(guān)矩陣。B “Loading plots”(因子負(fù)荷量):繪出因素的散步圖。 “Maximum Iterations for Convergence”:轉(zhuǎn)軸時之行的疊代最多次數(shù),后面默認(rèn)得數(shù)字為25,表示算法之行轉(zhuǎn)軸時,執(zhí)行步驟的次數(shù)上限。在本例中,選擇“Varimax”、“Rotated s

15、olution”二項。研究者要選擇“Rotated solution”選項,才能顯示轉(zhuǎn)軸后的相關(guān)信息。單擊“Continue”按鈕確定。(5)設(shè)置因素分?jǐn)?shù)單擊圖6-34對話框中的“Scores”按鈕,彈出“Factor Analyze:Factor Scores”(因素分析:因素分?jǐn)?shù))對話框,如圖6-38所示。 “Save as variable”(因素存儲變量)框勾選時可將新建立的因素分?jǐn)?shù)存儲至數(shù)據(jù)文件中,并產(chǎn)生新的變量名稱(默認(rèn)為fact_1、fact_2、fact_3、fact_4等)。在“Method”框中表示計算因素分?jǐn)?shù)的方法有三種:A “Regression”:使用回歸法。B “B

16、artlett”:使用Bartlette法C “Anderson-Robin”:使用Anderson-Robin法。 “Display factor coefficient matrix”(顯示因素分?jǐn)?shù)系數(shù)矩陣)選項勾選時可顯示因數(shù)分?jǐn)?shù)系數(shù)矩陣。在本例中,取默認(rèn)值。單擊“Continue”按鈕確定。(6)設(shè)置因素分析的選項單擊圖6-34對話框中的“Options”按鈕,彈出“Factor Analyze:Options”(因素分析:選項)對話框,如圖6-39所示?!癕issing Values”(遺漏值)選項框:遺漏值的處理方式。A “Exclude cases listwise”(完全排除遺

17、漏值):觀察值在所有變量中沒有遺漏值者才加以分析。B “Exclude cases pairwise”(成對方式排除):在成對相關(guān)分析中出現(xiàn)遺漏值得觀察值舍棄。C “Replace with mean”(用平均數(shù)置換):以變量平均值取代遺漏值。“Coefficient Display Format”(系數(shù)顯示格式)選項框:因素負(fù)荷量出現(xiàn)的格式。A “Sorted by size”(依據(jù)因素負(fù)荷量排序):根據(jù)每一因素層面的因素負(fù)荷量的大小排序。B “Suppress absolute values less than”(絕對值舍棄的下限):因素負(fù)荷量小于后面數(shù)字者不被顯示,默認(rèn)的值為0.1。在本

18、例中,選擇“Exclude cases listwise”、“Sorted by size”二項,并勾選“Suppress absolute values less than”,其后空格內(nèi)的數(shù)字不用修改,默認(rèn)為0.1。如果研究者要呈現(xiàn)所有因素負(fù)荷量,就不用選取“Suppress absolute values less than”選項。在例題中為了讓研究者明白此項的意義,才勾選了此項,正式的研究中應(yīng)呈現(xiàn)題項完整的因素負(fù)荷量較為適宜。單擊“Continue”按鈕確定。設(shè)置完所有的選項后,單擊“OK”按鈕,輸出結(jié)果。 結(jié)果分析(1)KMO及Bartlett檢驗如圖6-40所示,顯示KMO及Bart

19、lett檢驗結(jié)果。KMO是Kaiser-Meyer-Olkin的取樣適當(dāng)性量數(shù),當(dāng)KMO值愈大時,表示變量間的共同因素愈多,愈適合進(jìn)行因素分析,根據(jù)專家Kaiser(1974)觀點,如果KMO的值小于0.5時,較不宜進(jìn)行因素分析,此處的KMO值為0.695,表示適合因素分析。此外,從Bartletts球形檢驗的 值為234.438,自由度為45,達(dá)到顯著,代表母群體的相關(guān)矩陣間有共同因素存在,適合進(jìn)行因素分析。(2)共同性如圖6-41所示,顯示因素間的共同性結(jié)果。共同性中顯示抽取方法威主成份分析法,最右邊一欄為題項的共同性。(3)陡坡圖如圖6-42所示,顯示因素的陡坡圖。 從陡坡圖中,可以看出從第三個因素以后,坡線甚為平坦,因而以保留3個因素較為適宜。(4)整體解釋的變異數(shù)未轉(zhuǎn)軸前的數(shù)據(jù)如圖6-43所示,顯示的是未轉(zhuǎn)軸前整體解釋的變異數(shù)。 從圖中可以看出,左邊10個成份因素的特征值總和等于10。解釋變異量為特征值除以題項數(shù),如第一個特征值得解釋變異量為6.358÷10 63.579。將左邊10個成份的特征值大于1的列于右邊。特征值大于1的共有三個,這也是因素分析時所抽出的共同因素數(shù)。由于特征值是由大到小排列,所以第一個共同因素的解釋變異量通常是最大者,其次是第二個1.5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論