![2022屆甘肅會寧高考數(shù)學五模試卷含解析_第1頁](http://file4.renrendoc.com/view/3cd3cbf86c1c52ce93e202d78ce882e0/3cd3cbf86c1c52ce93e202d78ce882e01.gif)
![2022屆甘肅會寧高考數(shù)學五模試卷含解析_第2頁](http://file4.renrendoc.com/view/3cd3cbf86c1c52ce93e202d78ce882e0/3cd3cbf86c1c52ce93e202d78ce882e02.gif)
![2022屆甘肅會寧高考數(shù)學五模試卷含解析_第3頁](http://file4.renrendoc.com/view/3cd3cbf86c1c52ce93e202d78ce882e0/3cd3cbf86c1c52ce93e202d78ce882e03.gif)
![2022屆甘肅會寧高考數(shù)學五模試卷含解析_第4頁](http://file4.renrendoc.com/view/3cd3cbf86c1c52ce93e202d78ce882e0/3cd3cbf86c1c52ce93e202d78ce882e04.gif)
![2022屆甘肅會寧高考數(shù)學五模試卷含解析_第5頁](http://file4.renrendoc.com/view/3cd3cbf86c1c52ce93e202d78ce882e0/3cd3cbf86c1c52ce93e202d78ce882e05.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若復數(shù)在復平面內(nèi)對應的點在第二象限,則實數(shù)的取值范圍是( )ABCD2函數(shù)的部分圖象大致為( )ABCD3不等式組表示的平面區(qū)域為,則( )A,B,C,D,4某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD5已知復數(shù)z滿足(i為虛數(shù)單位),則z的虛部為( )ABC1D6函數(shù)的最大值為,最小正周期為,則有序數(shù)對為( )ABCD7設(shè) ,則()A10B11C12D138已知直線與圓有公共點,則的最大值為( )A4BCD9在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示將
3、彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是( )ABCD10若函數(shù)()的圖象過點,則( )A函數(shù)的值域是B點是的一個對稱中心C函數(shù)的最小正周期是D直線是的一條對稱軸11已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則( )ABCD12已知雙曲線C:=1(a0,b0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為( )ABC2D+1二、填空題:本題共4小題,每小題5分,共20分。13若變量,滿足約束條件則的最大值為_.14
4、利用等面積法可以推導出在邊長為a的正三角形內(nèi)任意一點到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進行推導,在棱長為a的正四面體內(nèi)任意一點到四個面的距離之和也為定值,則這個定值是_15已知向量,且,則_.16已知數(shù)列中,為其前項和,則_,_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.18(12分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡知識問卷調(diào)查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了2
5、00份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學生家長制定如下獎勵方案:得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:;若;則,.19(12分)已知函數(shù)是自然對數(shù)的底數(shù).(
6、1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.20(12分)如圖,在三棱柱中,、分別是、的中點.(1)證明:平面;(2)若底面是正三角形,在底面的投影為,求到平面的距離.21(12分)已知函數(shù).(1)當時.求函數(shù)在處的切線方程;定義其中,求;(2)當時,設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.22(10分)如圖,在直棱柱中,底面為菱形,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B
7、【解析】復數(shù),在復平面內(nèi)對應的點在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題2B【解析】圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當時,排除C、D當時,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。3D【解析】根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可
8、得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中 ,設(shè),則,的幾何意義為直線在軸上的截距的2倍,由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.4A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形
9、狀是解題的關(guān)鍵5D【解析】根據(jù)復數(shù)z滿足,利用復數(shù)的除法求得,再根據(jù)復數(shù)的概念求解.【詳解】因為復數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.6B【解析】函數(shù)(為輔助角)函數(shù)的最大值為,最小正周期為故選B7B【解析】根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x10內(nèi)的函數(shù)值,代入即可求出其值【詳解】f(x),f(5)ff(1)f(9)ff(15)f(13)1故選:B【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題8C【解析】根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,
10、因為直線與圓有公共點,所以圓心到直線的距離,即 ,解得,此時, 因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.9B【解析】為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎(chǔ)題.10
11、A【解析】根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點,可得,即,故,對于A,由,則,故A正確;對于B,當時,故B錯誤;對于C,故C錯誤;對于D,當時,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.11D【解析】由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.12B【解析】以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限
12、的解得,即,則,整理得,則(舍去),.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。137【解析】畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.14【解析】計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點到四個面的距離之和
13、為則故答案為:【點睛】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎(chǔ)題.15【解析】由向量平行的坐標表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.168 (寫為也得分) 【解析】由,得,.當時,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)將函數(shù)的解析式表示為分段函數(shù),然后分、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由
14、題意得出,解此不等式即可得出實數(shù)的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞減,則,即;當時,函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,解得.因此,實數(shù)的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.18(1);(2)估計此次活動可能贈送出100000元話費【解析】(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動可獲贈話費為元,利用題設(shè)條件求出其分布列,再利用公式
15、求出其期望后可得計此次活動可能贈送出的話費數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得又,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈
16、送出100000元話費.【點睛】本題考查正態(tài)分布、離散型隨機變量的分布列及數(shù)學期望,注意與正態(tài)分布有關(guān)的計算要利用該分布的密度函數(shù)圖象的對稱性來進行,本題屬于中檔題.19(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),又,所以在單增, 從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個
17、極值點,所以不妨設(shè),得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)研究函數(shù)的極值點,考查利用導數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.20(1)證明見解析;(2).【解析】(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,為正三角形,且
18、為的中點,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.21(1);8079;(2).【解析】(1)時,利用導數(shù)的幾何意義能求出函數(shù)在處的切線方程由,得,由此能求出的值(2)根據(jù)若對任意給定的,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍【詳解】(1),所以切線方程為.,. 令,則,. 因為, 所以, 由+得,所以. 所以.(2),當時,函數(shù)單調(diào)遞增;當時,函數(shù)單調(diào)遞減,所以,函數(shù)在上的值域為. 因為, ,故,此時,當 變化時、的變化情況如下:0+單調(diào)減最小值單調(diào)增,對任意給定的,在區(qū)間上總存在兩個不同的, 使得成立,當且僅當滿足下列條件,即令,當時,函數(shù)單調(diào)遞增,當時,函數(shù)單調(diào)遞減所以,對任意,有,即對任意恒成立.由式解得:綜合可知,當時,對任意給定的,在上總存在兩個不同的,使成立.【點睛】本題考查了導數(shù)的幾何意義、應用導數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會利用導函數(shù)的正負確定函數(shù)的單調(diào)性,會根據(jù)函數(shù)的增減性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘教版數(shù)學八年級下冊《小結(jié)練習》聽評課記錄
- 人教版七年級數(shù)學上冊4.3.2《角的比較與運算》聽評課記錄
- 生化儀器維修合同(2篇)
- 湘教版數(shù)學九年級上冊5.1《總體平均數(shù)與方差的估計》聽評課記錄1
- 人教版英語七年級下冊知識點
- 人教版數(shù)學九年級下冊29.2《三視圖》聽評課記錄(二)
- 浙教版數(shù)學七年級上冊《6.6 角的大小比較》聽評課記錄1
- 小學二年級數(shù)學口算心算題天天練75套
- 五年級數(shù)學下冊聽評課記錄《4.1 體積與容積 》北師大版
- 蘇科版數(shù)學九年級上冊1.4《用一元二次方程解決問題》聽評課記錄4
- 藥膳與食療試題及答案高中
- 二零二五年度海外市場拓展合作協(xié)議4篇
- 2024年湖南汽車工程職業(yè)學院單招職業(yè)技能測試題庫標準卷
- 2025中國鐵塔集團安徽分公司招聘29人高頻重點提升(共500題)附帶答案詳解
- 2025年河北省農(nóng)村信用社招聘歷年高頻重點提升(共500題)附帶答案詳解
- 手術(shù)室植入物的管理
- 電力供電系統(tǒng)試驗調(diào)試和聯(lián)調(diào)方法
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導則
- 法語工程詞匯(路橋、隧道、房建)
- 地推管理制度(完整版)
- NUDD新獨難異失效模式預防檢查表
評論
0/150
提交評論