版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)專心-專注-專業(yè)精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)2020屆北京市密云區(qū)高三下學(xué)期第一次階段性測試(一模)數(shù)學(xué)試題一、單選題1已知集合,則( )ABCD【答案】C【解析】根據(jù)交集計算即可.【詳解】,,故選:C【點睛】本題主要考查了交集的運算,屬于容易題.2已知復(fù)數(shù),則( )ABCD2【答案】C【解析】根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,故選:C【點睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.3設(shè)數(shù)列是等差數(shù)列,.則這個數(shù)列的前7項和等于( )A12B21C24D36【答案】B【解析】根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求
2、和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,所以,即,又,所以,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.4已知平面向量,則實數(shù)x的值等于( )A6B1CD【答案】A【解析】根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,即,故選:A【點睛】本題主要考查了向量平行的坐標(biāo)運算,屬于容易題.5已知x,則“”是“”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件【答案】D【解析】,不能得到, 成立也不能推出,即可得到答案.【詳解】因為x,當(dāng)時,不妨取,故時,不成立,當(dāng)時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,
3、故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.6如果直線與圓相交,則點與圓C的位置關(guān)系是( )A點M在圓C上B點M在圓C外C點M在圓C內(nèi)D上述三種情況都有可能【答案】B【解析】根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即也就是點到圓的圓心的距離大于半徑即點與圓的位置關(guān)系是點在圓外故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題7函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為( )ABCD【答案】D【解析】由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單
4、調(diào)增區(qū)間即可.【詳解】由圖象知,所以,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點法”求函數(shù)解析式,屬于中檔題.8某四棱錐的三視圖如圖所示,則該四棱錐的表面積為( )A8BCD【答案】D【解析】根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.9已知斜率為k的直線l與拋物線交于A,B兩點,線段AB
5、的中點為,則斜率k的取值范圍是( )ABCD【答案】C【解析】設(shè),設(shè)直線的方程為:,與拋物線方程聯(lián)立,由得,利用韋達定理結(jié)合已知條件得,代入上式即可求出的取值范圍【詳解】設(shè)直線的方程為:, ,聯(lián)立方程,消去得:,且,線段的中點為,,把 代入,得,故選:【點睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達定理的應(yīng)用,屬于中檔題10在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是( )A點F的軌跡是一條線段B與BE是異面直線C與不可能平行D三棱錐的體積為定值【答案】C【解析】分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷【詳解】對
6、于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、, ,平面,平面,平面同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點正確對于,平面平面,和平面相交,與是異面直線,正確對于,由知,平面平面,與不可能平行,錯誤對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題二、填空題11的展開式中含的系數(shù)為_(用數(shù)字填寫答案)【答案】 【解析】由題意得,二項式展開式的通項為,令,則,所以得系數(shù)為12雙曲線的焦點坐標(biāo)是_,
7、漸近線方程是_.【答案】 【解析】通過雙曲線的標(biāo)準(zhǔn)方程,求解,即可得到所求的結(jié)果【詳解】由雙曲線,可得,則,所以雙曲線的焦點坐標(biāo)是,漸近線方程為:故答案為:;【點睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運算能力,屬于容易題13在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_,第_天該醫(yī)院本次收治的所有患者能全部治愈出院.【答案】16 21 【解析】由題意可知出院人數(shù)構(gòu)成一個首項為1,公比為2的等比數(shù)列,由此可求結(jié)
8、果【詳解】某醫(yī)院一次性收治患者127人第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項,2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院故答案為:16,21【點睛】本題主要考查了等比數(shù)列在實際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題14函數(shù)的最小正周期是_,單調(diào)遞增區(qū)間是_.【答案】 , 【解析】化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可【詳解】函數(shù),最小正周期,令,可得,所以單調(diào)遞增區(qū)間是
9、,故答案為:,【點睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題15已知函數(shù),若關(guān)于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_.【答案】【解析】畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍【詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當(dāng)過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:【點睛】本題主要考查了方程的跟與函數(shù)的圖象交點的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題三、解答題16在中,a,b,c分別是角A,B
10、,C的對邊,并且.(1)已知_,計算的面積;請,這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.【答案】(1)見解析(2)1【解析】(1) 選,可得,結(jié)合,求得即可;若選,由可得由,求得即可;若選,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可【詳解】(1)若選,又,的面積若選,由可得,又,的面積 若選,又,可得,的面積(2),當(dāng)時,有最大值1【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題17在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國
11、衛(wèi)生運動,從人居環(huán)境改善、飲食習(xí)慣、社會心理健康、公共衛(wèi)生設(shè)施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六
12、類狀況之一,各類調(diào)查是否達到良好標(biāo)準(zhǔn)相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,的大小關(guān)系.【答案】(1)(2)(3)【解析】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好
13、者“、“膳食合理狀況良好者”事件分別為,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀
14、況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個良好習(xí)慣的概率為0.766.(3)【點睛】本題考查了古典概型求概率,獨立性事件,互斥性事件求概率等,考查運算能力和事件應(yīng)用能力,中檔題18如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.【答案】(1)(2)(3)直線平面,證明見解析【解析】取中點,連接,則,再由已知證明平面,以為坐標(biāo)原點,分別以,所在直線為,軸建立空間直角坐標(biāo)
15、系,求出平面的一個法向量(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面【詳解】底面是邊長為2的菱形,為等邊三角形取中點,連接,則,為等邊三角形,又平面平面,且平面平面,平面以為坐標(biāo)原點,分別以,所在直線為,軸建立空間直角坐標(biāo)系則,1,0,0,設(shè)平面的一個法向量為由,取,得(1)證明:設(shè)直線與平面所成角為,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個法向量為,由,得二面角的余弦值為;(3),又平面,直線平面【點睛】本題考查線面平行的證明,考查二面角
16、的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題19已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點個數(shù).【答案】(1)(2)答案見解析(3)答案見解析【解析】(1)設(shè)曲線在點,處的切線的斜率為,可求得,利用直線的點斜式方程即可求得答案;(2)由()知,分時,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點個數(shù)【詳解】(1),設(shè)曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,故當(dāng)時,所以在上單調(diào)遞增;當(dāng)時,;,;的遞減區(qū)間為,遞增區(qū)間
17、為,;當(dāng)時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調(diào)遞增為,無遞減區(qū)間;當(dāng)時,的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時,恒成立,所以無零點;當(dāng)時,由,得:,只有一個零點【點睛】本題考查利用導(dǎo)數(shù)研究曲線上某點的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運算能力,屬于中檔題20已知橢圓的離心率為,且過點.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標(biāo)原點,試判斷以O(shè)D為直徑的圓與點M的位置關(guān)系.【答案】(1)(2)點在
18、以為直徑的圓上【解析】(1)根據(jù)題意列出關(guān)于,的方程組,解出,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點,則,求出直線的方程,進而求出點的坐標(biāo),再利用中點坐標(biāo)公式得到點的坐標(biāo),下面結(jié)合點在橢圓上證出,所以點在以為直徑的圓上【詳解】(1)由題意可知,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點,則,直線的斜率為,直線的方程為:,令得,點的坐標(biāo)為,點的坐標(biāo)為,又點,在橢圓上,點在以為直徑的圓上【點睛】本題主要考查了橢圓方程,考查了中點坐標(biāo)公式,以及平面向量的基本知識,屬于中檔題21設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,).記數(shù)表中位于第i行第j列的元素為,其中(,).如:,.(1)設(shè),請計算,;(2)設(shè),試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球1-戊基-1H-吲哚行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球電子纖維鼻咽鏡行業(yè)調(diào)研及趨勢分析報告
- 行業(yè)透視對公業(yè)務(wù)市場細分與行業(yè)特性
- 科技賦能的智能養(yǎng)寵市場研究
- 上海市奉賢區(qū)2022-2023學(xué)年高三上學(xué)期練習(xí)卷(一模)政治試題 附解析
- 二零二五年度桉樹種植項目可持續(xù)發(fā)展承包合同范本4篇
- 2025年度鋼管加工中心設(shè)備采購與安裝承包合同
- 二零二五年度采砂廠資源綜合利用合同3篇
- 牡丹江2025年黑龍江牡丹江醫(yī)科大學(xué)招聘109人筆試歷年參考題庫附帶答案詳解
- 二零二五年度智能物流配送服務(wù)合同6篇
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級英語下冊寒假提前學(xué)(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細則版B版
- 幼兒園籃球課培訓(xùn)
- 基底節(jié)腦出血護理查房
- 工程公司總經(jīng)理年終總結(jié)
- 一例產(chǎn)后出血的個案護理
- 急診與災(zāi)難醫(yī)學(xué)課件 03 呼吸困難大課何琳zhenshi
- 直埋電纜溝工程專項施工組織設(shè)計
評論
0/150
提交評論