2022年黑龍江省肇東高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第1頁
2022年黑龍江省肇東高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第2頁
2022年黑龍江省肇東高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第3頁
2022年黑龍江省肇東高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第4頁
2022年黑龍江省肇東高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若函數(shù)在處取得極值2,則( )A-3B3C-2D22已知直線與圓有公共點(diǎn),則的最大值為( )A4BCD3下圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓

2、的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則( )ABC1D4已知,是平面內(nèi)三個(gè)單位向量,若,則的最小值( )ABCD55下圖為一個(gè)正四面體的側(cè)面展開圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為( )ABCD6函數(shù)的一個(gè)單調(diào)遞增區(qū)間是( )ABCD7函數(shù)f(x)的圖象大致為()ABCD8已知為實(shí)數(shù)集,則( )ABCD9已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為( )ABCD10設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為( )A2B24C16D1411若直線ykx1與圓x2y21相交于P、Q兩點(diǎn),且POQ120(其中O為坐標(biāo)原點(diǎn)),則k的值為()A

3、B C或D和12已知,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)f(x)x2xlnx的圖象在x1處的切線方程為_.14已知函數(shù).若在區(qū)間上恒成立.則實(shí)數(shù)的取值范圍是_15集合,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說法正確的為_的值可以為2;的值可以為;的值可以為;16平行四邊形中,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.18(12分)設(shè)為拋物

4、線的焦點(diǎn),為拋物線上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).()若點(diǎn)在線段上,求的最小值;()當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.19(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.()寫出曲線的極坐標(biāo)方程,并指出是何種曲線;()若射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求面積的取值范圍.20(12分)在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相

5、交于兩點(diǎn),若,求的值.21(12分)設(shè)數(shù)列是等比數(shù)列,已知, (1)求數(shù)列的首項(xiàng)和公比;(2)求數(shù)列的通項(xiàng)公式22(10分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且平面()證明:平面平面;()求直線與平面所成角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】對(duì)函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.【點(diǎn)睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.2C【解析】根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】

6、因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即 ,解得,此時(shí), 因?yàn)?,在遞增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.3D【解析】根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.4A【解析】由于,且為單位向量,所以可令,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果【詳解

7、】解:設(shè),則,從而,等號(hào)可取到故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題5C【解析】將正四面體的展開圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角, ,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點(diǎn)睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔

8、題.6D【解析】利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).7D【解析】根據(jù)函數(shù)為非偶函數(shù)可排除兩個(gè)選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個(gè)選項(xiàng).【詳解】因?yàn)閒(x)f(x)知f(x)的圖象不關(guān)于y軸對(duì)稱,排除選項(xiàng)B,C.又f(2)0.排除A,故選D.【點(diǎn)睛】本題主要考查了

9、函數(shù)圖象的對(duì)稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.8C【解析】求出集合,由此能求出【詳解】為實(shí)數(shù)集,或,故選:【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題9D【解析】由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.10D【解析】做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表

10、示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.11C【解析】直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且POQ=120(其中O為原點(diǎn)),可以發(fā)現(xiàn)QOx的大小,求得結(jié)果【詳解】如圖,直線過定點(diǎn)(0,1),POQ=120OPQ=30,1=120,2=60,由對(duì)稱性可知k=故選C【點(diǎn)睛】本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題12D【解析】分別解出集合然后求并集.【詳解】解:, 故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13xy0.【解析】先將x1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步

11、求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y1x1,即xy0.故答案為:xy0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.14【解析】首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因?yàn)樵趨^(qū)間上恒成立,解得即故答案為:【點(diǎn)睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.15【解析】根據(jù)對(duì)稱性,只需研究第一象限的情況,計(jì)算:,得到,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)

12、所構(gòu)成的集合,故所在的直線的傾斜角為,故:,解得,此時(shí),此時(shí).故答案為:.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱性是解題的關(guān)鍵.16【解析】依題意可得、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、四點(diǎn)共圓,所以因?yàn)?,所以,所以三角形為正三角形,則,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,且面面, 面所以面,所以外接球的半徑所以故答案為:

13、【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)2【解析】(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),由正弦定理得,即,又 ,又 , 由可得.(2)由(1)可得,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.18()()【解析】(1)由拋物線的性質(zhì),當(dāng)軸時(shí),最小;(2)設(shè)點(diǎn),分別代入拋物線方程和得到三個(gè)方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.

14、【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,根據(jù)拋物線的性質(zhì),當(dāng)軸時(shí),最小,最小值為,即為4.(2)由題意,設(shè)點(diǎn),其中,.則,因?yàn)?,所?由,得,由,且,得,解不等式,得點(diǎn)縱坐標(biāo)的范圍為.【點(diǎn)睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運(yùn)算能力,此類問題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等,易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解.19(),曲線是以為圓心,為半徑的圓;().【解析】()由曲線的參數(shù)方程能求出曲線的普通方程,由此能求出曲線的極坐標(biāo)方程()令,則,利用誘導(dǎo)公式及二倍角公式化簡(jiǎn),再由余弦函數(shù)的性質(zhì)求出面積的取值范圍;【詳解】解:()由(為

15、參數(shù))化為普通方程為,整理得曲線是以為圓心,為半徑的圓.()令,面積的取值范圍為【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程的求法,考查三角形的面積的求法,考查參數(shù)方程、直角坐標(biāo)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題20(1)(2)【解析】(1)首先將曲線化為直角坐標(biāo)方程,由點(diǎn)在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設(shè)、對(duì)應(yīng)的參數(shù)分別為,列出韋達(dá)定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標(biāo)方程為.由點(diǎn)在圓外,得點(diǎn)的坐標(biāo)為,結(jié)合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點(diǎn),傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設(shè)、對(duì)應(yīng)的參數(shù)分別為,則,.由及在圓的上方,得,即,代入,得,消去,得,結(jié)合,解得.故的值是.【點(diǎn)睛】本題考查極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.21 (1)(2)【解析】本題主要考查了等比數(shù)列的通項(xiàng)公式的求解,數(shù)列求和的錯(cuò)位相減求和是數(shù)列求和中的重點(diǎn)與難點(diǎn),要注意掌握(1)設(shè)等比數(shù)列an的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1qn-1=2n-1,結(jié)合數(shù)列的特點(diǎn),考慮利用錯(cuò)位相減可求數(shù)列的和解:(1)(2), 兩式相減:22()見解析()【解析】()連接交于點(diǎn),連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論