




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、對數(shù)函數(shù)及其性質(zhì)人教A版第二章 第2.2.2節(jié) 第一課時10數(shù)1班對數(shù)函數(shù)的定義對數(shù)函數(shù)的圖像對數(shù)函數(shù)的性質(zhì)學(xué)教預(yù)告復(fù)習(xí): 一般地,函數(shù) y = ax ( a 0, 且 a 1 ) 叫做指數(shù)函數(shù),其中x是自變量.a 10 a 1 圖 象 性 質(zhì)定 義 域 : 值 域 :過 點 ( 0 , 1 ) ,即 x = 0 時, y = 1 . 在 R 上是增函數(shù)在 R 上是減函數(shù)y=1yx0(0,1)y=axyx(0,1)y=10y=axR(0 , +)思考知道了細胞個數(shù)y,如何確定分裂次數(shù)x?我們知道某細胞的分裂過程中,細胞數(shù)y是分裂次數(shù)x的指數(shù)函數(shù) y = 2 x。因此,知道x的值(輸入值是分裂次
2、數(shù)),就能求出y的值(輸出的值是細胞個數(shù))?,F(xiàn)在我們來研究相反的問題:(1)在函數(shù)的定義中,為什么要限定a0且1?(2)為什么對數(shù)函數(shù)y = loga x (a0且1)的定義域是(0,+)? 一般地,函數(shù)y = loga x (a0,且a 1)叫做對數(shù)函數(shù).其中 x是自變量, 函數(shù)的定義域是( 0 , +)想一想 對數(shù)函數(shù)根據(jù)對數(shù)與指數(shù)式的關(guān)系,知 可化為 ,由指數(shù)的概念,要使 有意義,必須規(guī)定a0且1因為 可化為 ,不管 y取什么值,由指數(shù)函數(shù)的性質(zhì), 0,所以 溫馨提示對數(shù)函數(shù)及其性質(zhì),判斷:以下函數(shù)是對數(shù)函數(shù)的是 ( )A. y=log2(3x-2) B. y=log(x-1)xC. y
3、=log1/3x2 D.y=lnx小試牛刀D 求下列函數(shù)的定義域:(1)x|x0(2)x|x1 (4)x|x0且x1在同一坐標(biāo)系中用描點法畫出對數(shù)函數(shù) 的圖象。作圖步驟: 列表, 描點, 連線。對數(shù)函數(shù):y = loga x (a0,且a 1) 圖象與性質(zhì)X1/41/2124.y=log2x-2-1012列表描點作y=log2x圖象連線21-1-21240yx3列表描點作y=log0.5x圖像連線21-1-21240yx3x1/41/2124 2 1 0 -1 -2 -2 -1 0 1 2思考這兩個函數(shù)的圖象有什么關(guān)系呢?關(guān)于x軸對稱y=log3xy=log2xy=log xy=log x你能
4、發(fā)現(xiàn)什么規(guī)律嗎?比一比圖 象 性 質(zhì)a 1 0 a 1定義域 : 值 域 :過定點在(0,+)上是在(0,+)上是當(dāng)x1時, 當(dāng)x=1時, 當(dāng)0 x0y=0y1時, 當(dāng)x=1時, 當(dāng)0 x1時,y0 對數(shù)函數(shù)的性質(zhì)課堂隨練練一練例1:比較下列各組中,兩個值的大?。?log23與 log28.5log23log28.53108.5解法1:畫圖找點比高低解法2:利用對數(shù)函數(shù)的單調(diào)性考察函數(shù)y=log 2 x ,a=2 1, y=log 2 x在(0,+) 上是增函數(shù);38.5 log23 log28.5 log231時為增函數(shù)(0a1時為減函數(shù)).比較真數(shù)值的大小;注意!你能口答嗎?變一變還能口答
5、嗎?注意:若底數(shù)不確定,那就要對底數(shù)進行分類討論即0a 1例2:比較下列各組中,兩個值的大?。?loga5.1與 loga5.9解: 若a1則函數(shù)在區(qū)間(0,+)上是增函數(shù); 5.15.9 loga5.1 loga5.9 若0a1則函數(shù)在區(qū)間(0,+)上是減函; 5.1 loga5.9C (一)你能比較log34和log43的大小嗎?提示:利用畫圖找點比高低的方法在同一坐標(biāo)內(nèi)畫出函數(shù) y= log3x和y= log4x的圖象再來一題探究1:設(shè)點P(m,n)為對數(shù)函數(shù) 圖象上任意一點,則 ,從而有 .由此可知點Q(n,m)在哪個函數(shù)的圖象上?知識探究探究2:對數(shù)函數(shù) 的圖象與指數(shù) 函數(shù) 的圖象有怎樣的位置關(guān)系? 兩函數(shù)圖象關(guān)于直線y=x對稱。yx0111xy01a1知識探究0a10a0, a1)(4) 0 x1時, y1時, y0(4) 0 x0; x1時, y0 (3) 過點(1,0), 即x=1 時, y=0 (1) 定義域: (0,+)(2) 值域:Rxyo(1, 0)xyo(1, 0)(5)在(0,+)上是減函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DBJ04-T282-2025 《行道樹栽植技術(shù)規(guī)程》
- 汽車傳感器與檢測技術(shù)電子教案:柴油機煙度傳感器
- 推進中國政治文化現(xiàn)代化之基本路徑論析
- 佛山顏峰高科技農(nóng)業(yè)生態(tài)園項目建議及可行性研究報告
- 介紹民族大聯(lián)歡活動方案
- 倉儲團隊激勵活動方案
- 倉鼠訓(xùn)練活動方案
- 代理補貨活動方案
- 以色列旅游跨年活動方案
- 儀隴縣工會活動方案
- 《民法典》醫(yī)療損害責(zé)任篇培訓(xùn)
- 視覺功能評估的方法和工具
- 國開2023秋《言語交際》終結(jié)性考試參考答案
- 戶外運動基地可行性研究報告評價
- 環(huán)衛(wèi)保潔員安全試題
- 分級護理制度落實查檢表
- 徐雙敏《公共事業(yè)管理概論》筆記和課后習(xí)題詳解下載
- 中外古典園林史學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 焊接方法與設(shè)備說課稿課件
- 員工入職登記表
- 某某公司暴風(fēng)雨自然災(zāi)害應(yīng)急預(yù)案
評論
0/150
提交評論