版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知四棱錐,底面ABCD是邊長為1的正方形,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為( )ABCD12 “完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為( )ABCD3已知函數(shù)(,)的一個零點是
3、,函數(shù)圖象的一條對稱軸是直線,則當取得最小值時,函數(shù)的單調(diào)遞增區(qū)間是( )A()B()C()D()4若,則下列結(jié)論正確的是( )ABCD5()ABCD6已知(),i為虛數(shù)單位,則( )AB3C1D57已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4. 給出下列命題:;,其中真命題的個數(shù)為( )A1B2C3D48元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著算術(shù)啟蒙是中國古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,則輸出的( )A3B4C5D69若為純虛數(shù),則z( )AB6iCD2010雙曲線的左右焦點為
4、,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為( )AB3CD211已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號有( )ABCD12設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為( )AB3C1D二、填空題:本題共4小題,每小題5分,共20分。13已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為_.14若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為
5、,點是線段上一動點,.給出下列四個結(jié)論:為的重心;當時,平面;當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是_.15各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_.16等邊的邊長為2,則在方向上的投影為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,三棱柱中,平面,分別為,的中點.(1)求證: 平面;(2)若平面平面,求直線與平面所成角的正弦值.18(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.19(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,.(
6、1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.20(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A 級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B
7、 級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C 級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D 級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.求10件手工藝品中不能外銷的手工藝品最有可能是多少件;記1件手工藝品的利潤為X元,求X的分布列與期望.21(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式
8、;(2)求數(shù)列的前項和.22(10分)如圖,在四棱錐中,底面是邊長為2的菱形,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,若,求PH與平面PBC所成角的正弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,所
9、以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應(yīng)用.2C【解析】先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個
10、,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應(yīng)用.3B【解析】根據(jù)函數(shù)的一個零點是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,即,解得或(其中,).又,即(其中).由得或,即或(其中,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調(diào)遞增區(qū)間是().故選:B【點睛】此題考查三角函數(shù)的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數(shù)值為零,屬于較易題目.4D【解析】根據(jù)指數(shù)函
11、數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.5B【解析】利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案【詳解】故選B【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題6C【解析】利用復(fù)數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運算,是基礎(chǔ)題.7A【解析】先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命
12、題的真假,繼而判斷復(fù)合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當時,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.8B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解: 記執(zhí)行第次循環(huán)時,
13、的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關(guān)系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).9C【解析】根據(jù)復(fù)數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【詳解】 為純虛數(shù),且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運算,屬基礎(chǔ)題.10A【解析】設(shè),直線的方程為,聯(lián)立方程得到,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率
14、,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.11D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,滿足條件.故選:D.【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點到直線的距離公式.12D【解析】整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實部為0,虛部不為0,即可求解.【詳解】由題,因為純虛數(shù),所以,則,故選:D【點睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運算.二、填空題:本題共4小題,每小題5分,
15、共20分。13【解析】由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點 拋物線方程為 ,準線方程為過作準線的垂線,垂足為,則 設(shè)直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設(shè)直線的方程為,代入得:,解得: 或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當取得最小值時,直
16、線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.14【解析】點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以是正確的;取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以正確;若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以正確;由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以正確;由平面,可知平
17、面平面,記,由,可得平面平面,則,所以正確;若平面,則,設(shè)由得,易得,由,則,由得,解得,所以正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以錯誤.故答案為:【點睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.15【解析】將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關(guān)系求公比,屬于基礎(chǔ)題.16【解析】建立直角坐標系,結(jié)合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題
18、意可知:,則:,且,據(jù)此可知在方向上的投影為.【點睛】本題主要考查平面向量數(shù)量積的坐標運算,向量投影的定義與計算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)詳見解析;(2).【解析】(1)連接,則且為的中點,又為的中點,又平面,平面,故平面 (2)由平面,得,以為原點,分別以,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設(shè),則,取平面的一個法向量為,由,得:,令,得同理可得平面的一個法向量為平面平面,解得,得,又,設(shè)直線與平面所成角為,則.所以,直線與平面所成角的正弦值是18(1)證明見解析,;(2).【解析】(1
19、)將等式變形為,進而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達式,進而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【詳解】(1)因為,所以,即,所以數(shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),得,所以.【點睛】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.19(1)見解析(2)【解析】(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結(jié)論.(2) 過作交于,由為的中點,結(jié)合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面.中,為的中點,.又、平面,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,.又平面,平面.,.所以,又、兩兩互相垂直,以、為坐標軸建立如圖所示的空間直角坐標系.,設(shè)平面的法向量,則,即.令,則,.平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.20(1)(2)2 期望值為X900600300100P【解析】(1)一件手工藝品質(zhì)量為B級的概率為.(2)由題意可得一件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度廠房裝修與室內(nèi)外防滑及防跌落工程協(xié)議2篇
- 2025年度物業(yè)公司物業(yè)接管合同含年度工作目標3篇
- 2025年度牛奶飲料品牌授權(quán)與區(qū)域代理合同2篇
- 2025版精油原料供應(yīng)鏈金融合作協(xié)議3篇
- 2025年度智能交通建設(shè)項目總承包服務(wù)協(xié)議下載2篇
- 2025借調(diào)合同適用人群范圍
- 二零二五年度企業(yè)培訓(xùn)合同2篇
- 2024戶外露臺舞臺搭建與租賃合同
- 2024建筑公司與材料供應(yīng)商之間的采購合同
- 2024年項目預(yù)備協(xié)議:雙方合作框架3篇
- DB31T 1238-2020 分布式光伏發(fā)電系統(tǒng)運行維護管理規(guī)范
- 化妝品不良反應(yīng)監(jiān)測培訓(xùn)課件
- 分包計劃范文
- 個人住房質(zhì)押擔保借款合同書范本(3篇)
- 亞馬遜品牌授權(quán)書(英文模板)
- DB52∕T 046-2018 貴州省建筑巖土工程技術(shù)規(guī)范
- 醫(yī)療電子票據(jù)管理系統(tǒng)建設(shè)方案
- 火箭發(fā)動機課件-
- 人教版小學(xué)六年級數(shù)學(xué)上冊教學(xué)反思(46篇)
- atv61變頻器中文手冊
- 農(nóng)業(yè)機械維修業(yè)開業(yè)技術(shù)條件
評論
0/150
提交評論