版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),關(guān)于x的方程f(x)a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是( )A(0,1)(1,e)BCD(0,1)2某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共( )
2、種ABCD3設(shè)為拋物線的焦點,為拋物線上三點,若,則( ).A9B6CD4已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是( )ABCD5在中,為邊上的中線,為的中點,且,則( )ABCD6已知隨機變量的分布列是則( )ABCD7已知,且,則( )ABCD8已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件9若的展開式中的系數(shù)為150,則( )A20B15C10D2510若滿足約束條件則的最大值為( )A10B8C5D311已知,若方程有唯一解,則實數(shù)的取值范圍是( )ABCD12數(shù)列a
3、n,滿足對任意的nN+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列an的前100項的和S100=( )A132B299C68D99二、填空題:本題共4小題,每小題5分,共20分。13(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學(xué)在這次活動中答對的題數(shù)分別是,則這五位同學(xué)答對題數(shù)的方差是_14記為數(shù)列的前項和.若,則_.15某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部
4、門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_袋.16函數(shù)的值域為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.18(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.19(12分)百年大計,教育為本.某校積極響應(yīng)教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓(xùn).據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù)
5、)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,20(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難
6、等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院人進行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)21(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱
7、坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.22(10分)如圖,在四棱錐PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M為PC的中點(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN,若直線MN與平面PBC所成角的正弦值為,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只
8、有一項是符合題目要求的。1D【解析】原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a2,令t,則f(x)a記g(t)當(dāng)t2時,g(t)2ln(t)(t)單調(diào)遞減,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有兩個不等于2的不等根則,記h(t)(t2且t2),則h(t)令(t),則(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+)上單調(diào)遞減由,可得,即a2實數(shù)a的取值范圍是(2,2)故選:D【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)
9、鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.2B【解析】間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據(jù)分步乘法計數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據(jù)分步計數(shù)原理有,所以共有種.故選:B.【點睛】本題考查排列應(yīng)用問題、分步乘法計數(shù)原理,不相鄰問題插空法是解題的關(guān)鍵,屬于中檔題.3C【解析】設(shè),由可得,利用定義將用表示即可.【詳解】設(shè),由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問
10、題,考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.4B【解析】先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可【詳解】由題意,雙曲線的一條漸近線方程為,即,是直線上任意一點,則直線與直線的距離,圓與雙曲線的右支沒有公共點,則,即,又故的取值范圍為,故選:B【點睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題5A【解析】根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的
11、運算,向量數(shù)量積的性質(zhì),屬于中檔題.6C【解析】利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查7B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定
12、義式求解.8C【解析】先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且) 令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.9C【解析】通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當(dāng)時,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.10D【解析】畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最
13、值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉(zhuǎn)化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.11B【解析】求出的表達式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,由,可得,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),解得舍去),則的范圍是,故選:【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程
14、的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題12B【解析】由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。132【解析】由這五位同學(xué)答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差141【解析】由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解【詳解】由,得,且,則,即數(shù)列是以16為首項,以為公比的等比數(shù)列,則故答案為:1【點睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學(xué)生對這些知識的理解掌握水平
15、151【解析】根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.16【解析】利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為 故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)在三角形中,利用余弦定理列方程,解方程求得的長,進而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進而求得,利用兩角差的正弦公式,求
16、得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,解得,.(2)在中,.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18(1);(2)【解析】(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形
17、的面積公式的應(yīng)用,考查學(xué)生的計算求解能力,屬于中檔題.19(1);(2)117人;(3)分布列見解析,【解析】(1)首先求得和,再代入公式即可列方程,由此求得關(guān)于的線性回歸方程;(2)根據(jù)回歸直線方程計算公式,計算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數(shù)學(xué)期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出 .)(2)當(dāng)時,所以預(yù)測2019年高考該校考入名校的人數(shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進行演講的兩人是2018年畢業(yè)的人數(shù)的所有可能取值為0,1,2,的分布列為012【點睛】本小題主要考查平均數(shù)有關(guān)計算
18、,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數(shù)據(jù)處理能力,屬于中檔題.20(1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】(1)結(jié)合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補充如下:患心肺疾病不患心肺疾
19、病合計男女合計.故有的把握認為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、.從中選取三人共有以下種情形:、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點睛】本題考查利用獨立性檢驗的基本思想解決實際問題,同時也考查了利用列舉法求解古典概型的概率問題,考查計算能力,屬于中等題.21(1),(2)存在,【解析】(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉(zhuǎn)化為極坐標方程.根據(jù)極坐標和直角坐標轉(zhuǎn)化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.由圖像可知,存在這樣的點,則,且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度分享匯編【職工管理篇】十篇
- 高中語文常見的修辭方法及其辨析
- 單位管理制度呈現(xiàn)合集【職工管理篇】十篇
- 單位管理制度呈現(xiàn)大合集【人員管理篇】
- 《壽險經(jīng)營的命脈》課件
- 《看見學(xué)生的需要》課件
- 《班孫楠消防日》課件
- 物流行業(yè)人事工作總結(jié)
- 過年小學(xué)作文15篇
- 寵物行業(yè)寵物護理培訓(xùn)總結(jié)
- 遼寧2025年高中學(xué)業(yè)水平合格性考試物理試卷試題(含答案詳解)
- 工廠食堂安全衛(wèi)生管理方案
- 中藥硬膏熱貼敷治療
- 2024年人教版三年級上數(shù)學(xué)教學(xué)計劃和進度安排
- 《電能計量知識介紹》課件
- 2023-2024學(xué)年山東省濰坊市高新區(qū)六年級(上)期末數(shù)學(xué)試卷(含答案)
- 彈性模量自動生成記錄
- 2024年教師師德師風(fēng)工作計劃(2篇)
- 物流行業(yè)服務(wù)質(zhì)量保障制度
- 養(yǎng)老院物資采購流程及制度
- 眼鏡店年終總結(jié)及計劃
評論
0/150
提交評論