云南省曲靖市2021-2022學年高考數(shù)學一模試卷含解析_第1頁
云南省曲靖市2021-2022學年高考數(shù)學一模試卷含解析_第2頁
云南省曲靖市2021-2022學年高考數(shù)學一模試卷含解析_第3頁
云南省曲靖市2021-2022學年高考數(shù)學一模試卷含解析_第4頁
云南省曲靖市2021-2022學年高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知向量,若,則( )ABCD2下列說法正確的是( )A“若,則”的否命題是“若,則”B“若,

2、則”的逆命題為真命題C,使成立D“若,則”是真命題3若兩個非零向量、滿足,且,則與夾角的余弦值為( )ABCD4如圖,在中,且,則( )A1BCD5已知集合,集合,則( ).ABCD6拋物線y2=ax(a0)的準線與雙曲線C:x28-y24=1的兩條漸近線所圍成的三角形面積為22,則a的值為 ( )A8B6C4D27在正項等比數(shù)列an中,a5-a1=15,a4-a2 =6,則a3=( )A2B4CD88已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是( )ABCD9設(shè)為的兩個零點,且的最小值為1,則( )ABCD10為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學員必須到街道

3、路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有( )A12種B24種C36種D48種11已知為定義在上的偶函數(shù),當時,則( )ABCD12已知拋物線經(jīng)過點,焦點為,則直線的斜率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13直線過圓的圓心,則的最小值是_.14已知雙曲線-=1(a0,b0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_.15在邊長為2的正三角形中,則的取值范圍為_.16已知,則_.三、解答題:共70分。解答

4、應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.18(12分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實數(shù),使得,求證:19(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于,兩點,求的值.20(12分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2

5、)設(shè)數(shù)列滿足:,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;21(12分)已知函數(shù),(1)當時,討論函數(shù)的單調(diào)性;(2)若,當時,函數(shù),求函數(shù)的最小值22(10分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)向量坐標運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】, ,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關(guān)鍵是明確若兩向量平行,則.2D【解析】選項A

6、,否命題為“若,則”,故A不正確選項B,逆命題為“若,則”,為假命題,故B不正確選項C,由題意知對,都有,故C不正確選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確選D3A【解析】設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.4C【解析】由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得

7、答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.5A【解析】算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎(chǔ)題.6A【解析】求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值【詳解】拋物線y2=ax(a0)的準線為x=-a4, 雙曲線C:x28-y24=1的兩條漸近線為y=22x, 可得兩交點為-a4,-2a8,-a4,2a8, 即有三角形的面積為12a42a4

8、=22,解得a=8,故選A【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎(chǔ)題7B【解析】根據(jù)題意得到,解得答案.【詳解】,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.8D【解析】易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,.故選D【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題

9、,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.9A【解析】先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為12,再求出的值【詳解】由題得,設(shè)x1,x2為f(x)=2sin(x)(0)的兩個零點,且的最小值為1,=1,解得T=2;=2,解得=故選A【點睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題10C【解析】先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分

10、成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.11D【解析】判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】,故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學生對于函數(shù)性質(zhì)的靈活運用.12A【解析】先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】直線mxny10(m0,n

11、0)經(jīng)過圓x2+y22x+2y10的圓心(1,1),可得m+n1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】mxny10(m0,n0)經(jīng)過圓x2+y22x+2y10的圓心(1,1),m+n10,即m+n1.()(m+n)22+24,當且僅當mn時取等號.則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.14【解析】設(shè)點為,由拋物線定義知,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,解

12、得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.15【解析】建立直角坐標系,依題意可求得,而,故可得,且,由此構(gòu)造函數(shù),利用二次函數(shù)的性質(zhì)即可求得取值范圍【詳解】建立如圖所示的平面直角坐標系,則,設(shè),根據(jù),即,則,即,則,所以,且,故,設(shè),易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最

13、小值為,故的取值范圍為故答案為:【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題16【解析】由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,.故答案為:【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),列出

14、韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1),解得,橢圓的方程為.(2),可設(shè),.,設(shè)直線的方程為,顯然恒成立.設(shè),則,.,解得,解得,.此時直線的方程為,點到直線的距離為,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應(yīng)用,考查計算能力,屬于中檔題18(1)時,函數(shù)單調(diào)遞增,函數(shù)單調(diào)遞減,;(2)見解析【解析】(1)求出函數(shù)的定義域與導函數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性與最值,即可得證;【詳解】解:(

15、1)因為定義域為,所以,時,即在和上單調(diào)遞增,當時,即函數(shù)在單調(diào)遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,則令,解得,即在上單調(diào)遞增;令,解得,即在上單調(diào)遞減;則在取得極小值,也就是最小值, 從而結(jié)論得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與極值,利用導數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題19(1);(2)【解析】(1)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(2)將直線參數(shù)方程代入圓的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去;得

16、曲線的極坐標方程為.由,可得,即曲線的直角坐標方程為;(2)將直線的參數(shù)方程(為參數(shù))代入的方程,可得,設(shè),是點對應(yīng)的參數(shù)值,則.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.20(1)(2)當n為偶數(shù)時,;當n為奇數(shù)時,.(3)【解析】(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學歸納法,先猜想出通項公式,再用數(shù)學歸納法證明.(3)分類討論,當n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,當時,也滿足上式.所以

17、.(2)解法一:由(1)可知,即.當時,當時,所以,當時,當時,所以,當時,n為偶數(shù)當時,n為偶數(shù)所以以上個式子相加,得.又,所以當n為偶數(shù)時,.同理,當n為奇數(shù)時,所以,當n為奇數(shù)時,.解法二:猜測:當n為奇數(shù)時,.猜測:當n為偶數(shù)時,.以下用數(shù)學歸納法證明:,命題成立;假設(shè)當時,命題成立;當n為奇數(shù)時,當時,n為偶數(shù),由得故,時,命題也成立.綜上可知, 當n為奇數(shù)時同理,當n為偶數(shù)時,命題仍成立.(3)由(2)可知.當n為偶數(shù)時,所以隨n的增大而減小從而當n為偶數(shù)時,的最大值是.當n為奇數(shù)時,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數(shù)的取值

18、范圍是.【點睛】本題考查了累加法求數(shù)列通項公式的應(yīng)用,分類討論奇偶項的通項公式及求和方法,數(shù)學歸納法證明數(shù)列的應(yīng)用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.21(1)見解析 (2)的最小值為【解析】(1)由題可得函數(shù)的定義域為,當時,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減; 當時,令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,恒成立,所以函數(shù)在上單調(diào)遞增 綜上,當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增 (2)方法一:當時,設(shè),則,所以函數(shù)在上單調(diào)遞減,所以,當且僅當時取等號當時,設(shè),則,所以,設(shè),則,所以函數(shù)在上單調(diào)遞減,且,所以存在,使得,所以當時,;當時, 所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因為,所以,所以,當且僅當時取等號所以當時,函數(shù)取得最小值,且,故函數(shù)的最小值為 方法二:當時,則,令,則,所以函數(shù)在上單調(diào)遞增, 又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增, 因為,所以當時,恒成立,所以當時,恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為22(1)證明見解析;(2).【解析】(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,令,得或,故根據(jù)0與的大小關(guān)系來進行分類討論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論