版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2022/7/281假設檢驗(一)(Hypothesis Test) 2022/7/282復習上節(jié)課主要內容抽樣誤差統(tǒng)計推斷參數(shù)估計假設檢驗點估計區(qū)間估計2022/7/283抽樣誤差( Sampling Error)由個體變異和抽樣造成的樣本統(tǒng)計量與總體參數(shù)的差異。特點:客觀存在,不可避免;是偶然機遇。標準誤可用于衡量抽樣誤差的大小。2022/7/284當n足夠大或n較小但總體方差已知時,總體均數(shù)的區(qū)間估計(95%,99%) 當n較小但總體方差未知時 ,總體均數(shù)的區(qū)間估計1、 點估計( 近似值)2、 區(qū)間估計(近似范圍)2022/7/285 通過假設檢驗判斷兩樣本均數(shù)之間的差異是由于抽樣誤差所
2、致還是由于來自不同的總體所致。 1 = 2?假設檢驗(Hypothesis test)的基本思想2. 反證法:在假定H0(1 = 2 )成立的條件下,得出一個錯誤的結論或小概率事件,那么就有理由推翻H0,也就是說拒絕H0 ,接受H1 (1 2 ) 。3. 小概率原理 P 值的概念t 分布曲線下的尾部面積(即概率 P)2022/7/287小概率原理假設有一前提條件H0:1 = 2成立 t t0.05 /2, P 0.05 由抽樣分布理論計算統(tǒng)計量 對立條件H1:1 2 拒絕 H0 同時接受有統(tǒng)計學意義不能用抽樣誤差來解釋2022/7/288小概率原理(續(xù))假設有一前提條件H0:1 = 2成立 t
3、 0.05 根據抽樣分布理論 不拒絕無統(tǒng)計學意義抽樣誤差引起2022/7/289例1 據大量調查知,健康成年男子脈搏的均數(shù)為72次/分,某醫(yī)生在山區(qū)隨機調查了25名健康成年男子,其脈搏均數(shù)為74.2次/分,標準差為6.5次/分,能否認為該山區(qū)成年男子的脈搏高于一般人群?分析:問題的提出解決問題的思路2022/7/2810本例中均數(shù)不相等, 其原因可能有兩種: 由于抽樣誤差所致;由于環(huán)境條件的影響,使山區(qū)成年男子的脈搏的確高于一般。如何作出判斷?2022/7/2811假設檢驗思路反證法1 先假設待比較兩總體均數(shù)相同2 分析:兩樣本均數(shù)存在差別的可能原因3 判斷: 如果差異是抽樣誤差造成的,這種機
4、率有多大? 如果差異不是抽樣誤差造成的,則兩總體均數(shù)所在的總體存在著本質差異。2022/7/2812二、假設檢驗的基本步驟假設檢驗的方法很多,但其檢驗的基本步驟是一致的。 1、建立檢驗假設及確定檢驗水準 2022/7/2813假設有兩種:一、檢驗假設 或 無效假設 或稱 零假設 (Hypothesis to be tested,null hypothesis)用H0示之;二、備擇假設(alternative hypothesis),用H1示之。H0和H1都是根據統(tǒng)計推斷的目的提出的對總體特征的假設,是相互聯(lián)系且對立的一對假設。2022/7/2814假設檢驗主要是圍繞H0進行的,當H0被拒絕時,
5、則接受H1例1的無效假設H0為: 山區(qū)成年男子的平均脈搏數(shù)()與一般成年男子的平均脈搏數(shù)(0 )相等;備擇假設H1為:山區(qū)成年男子的平均脈搏數(shù)高于一般成年男子的平均脈搏數(shù)。2022/7/2815H0和H1的涵義及注意事項1 檢驗假設是針對總體,而非樣本;2 H0和H1是互相對立,不是可有可無, 而是缺一不可;3 H0無效假設,通常是某兩個或多個總體參數(shù)相同,或總體參數(shù)之差為0,或某資料服從某一分布等等;4 H1的內容反映出單側還是雙側。2022/7/2816單側、雙側問題建立假設前,先要根據分析目的和專業(yè)知識明確單側檢驗還是雙側檢驗以及檢驗水準,不能在假設檢驗結果得出后再加以選擇。2022/7
6、/2817兩樣本均數(shù)所代表的未知總體均數(shù)1與2 的比較目 的 H0H1雙側檢驗1 = 2 ?1 = 2 1 2單側檢驗1 2 ?1 = 2 1 2 1 2 ?1 = 2 1 0 山區(qū)成年男子平均脈搏數(shù)高于一般人群 單側 =0.052022/7/28222 選定檢驗方法及計算檢驗統(tǒng)計量 不同分析目的、不同設計類型和不同資料類型,選用不同檢驗方法。樣本均數(shù)與總體均數(shù)比較用單樣本t檢驗t值2022/7/2823例題已知n=25,=74.2次/分,s=6.5次/分,0=72.0次/分。 按下式進行計算 =n-1=25-1=242022/7/28243、 確定P 值,作出統(tǒng)計推斷 算出樣本統(tǒng)計量t值后,
7、查相應的t界值表,確定P 值。例題由t界值表t0.05,24=1.711,t0.10,24=1.318,得0.10 P 0.05,按=0.05水準不拒絕H0(統(tǒng)計結論),尚不能認為該山區(qū)健康成年男子的脈搏均數(shù)高于一般健康成年男子的脈搏均數(shù)(專業(yè)結論)。2022/7/2825選擇檢驗方法的根據是什么?根據實驗設計類型,設計確定了,檢驗方法也定下來了。實驗設計 數(shù)據類型 檢驗方法完全隨機設計(二樣本)、多樣本配對設計、配伍組設計2022/7/2826例2 北京、上海居民人均收入比較。調查北京、上海居民各2000人,對數(shù)據初步整理后,得到下面結果:北京居民人均收入1500元標準差為400元上海居民人
8、均收入2100元標準差為500元問北京、上海居民人均收入有無差別?2022/7/2827例3 某醫(yī)生測得18例慢性支氣管炎患者及16例健康人的尿17酮類固醇排出量(mg/dl)分別為X1 和X2, 試問兩組的尿17酮類固醇排出量有無不同。X1: 3.14 5.83 7.35 4.62 4.05 5.08 4.98 4.22 4.35 2.35 2.89 2.16 5.55 5.94 4.40 5.35 3.80 4.12 X2:4.12 7.89 3.24 6.36 3.48 6.74 4.67 7.38 4.95 4.08 5.34 4.27 6.54 4.62 5.92 5.18 2022
9、/7/2828例4 分別用兩種測量肺活量的儀器測得12名婦女的最大呼氣率(L/min),資料如表,問兩種方法的檢測結果有無差別?兩種方法檢測12名婦女最大呼氣率(L/min)結果2022/7/28292022/7/2830例5 某社區(qū)隨機抽取了30名糖尿病患者、IGT異常和正常人進行載脂蛋白(mg/dl)進行測定,結果見表,問三種人的載脂蛋白有無差別?2022/7/2831糖尿病患者、IGT異常和正常人載脂蛋白(mg/dl)測定糖尿病 IGT異常 正常人 85.70 96.00 144.00105.20 124.50 117.00109.50 105.10 110.00 96.00 76.40
10、 109.00105.20 95.30 103.00 95.30 110.00 123.00110.00 95.20 127.00100.00 99.00 121.00125.60 120.00 159.002022/7/2832t 分布的發(fā)現(xiàn)使小樣本統(tǒng)計推斷成為可能;以t 分布為基礎的檢驗稱為t檢驗;t 檢驗的主要類型:一組樣本資料的t 檢驗配對設計資料的t 檢驗兩組獨立樣本資料的t 檢驗t 檢 驗第一節(jié)單個樣本t檢驗One sample t test適用于樣本均數(shù)與已知總體均數(shù)0的比較,其比較目的是檢驗樣本均數(shù)所代表的總體均數(shù)是否與已知總體均數(shù)0有差別。已知總體均數(shù)0一般為標準值、理論值或
11、經大量觀察得到的較穩(wěn)定的指標值。單樣t檢驗的應用條件是總體標準差未知的小樣本資料( 如n50),且服從正態(tài)分布。 單個樣本 t 檢驗原理已知總體0未知總體樣本在 H0 : = 0的假定下,可以認為樣本是從已知總體中抽取的,根據t分布的原理,單個樣本t檢驗的公式為:自由度n-1單個樣本t檢驗實例分析例 6 (書例7-1 P113) 以往通過大規(guī)模調查已知某地20歲男子平均身高為168cm.從該地隨機抽取16名20歲男子作為研究樣本,平均身高為172cm,標準差為14cm,問該地現(xiàn)在20歲男子的平均身高是否比以往高?本例已知總體均數(shù)0=168cm,但總體標準差未知,n=16為小樣本,,S=14cm
12、,故選用單樣本t檢驗。單個樣本t檢驗檢驗步驟1. 建立檢驗假設,確定檢驗水準H0:0,該地現(xiàn)在20歲男子的平均身高與以往20歲男子的平均身高相同;H1:0,該地現(xiàn)在20歲男子的平均身高高于以往20歲男子的平均身高;0.05。2. 計算檢驗統(tǒng)計量在=0成立的前提條件下,計算統(tǒng)計量為:3. 確定P值,做出推斷結論本例自由度n-116-115,查t界值表,得t0.05,15=1.753, t0.1,15=1.341. t0.2,15=0.866 。因為t0.1,15 t t0.2,15,故0.1Pt0.05/2,16, P t0.01/2,11, P 0.01,差別有統(tǒng)計學意義,拒絕H0,接受H1,
13、可認為兩種方法皮膚浸潤反應結果的差別有統(tǒng)計學意義。2022/7/2849例8.書例7-3 P115.某研究者采用配對設計進行實驗,比較兩種抗癌藥物對小白鼠肉瘤抑制效果。先將10只染有肉瘤小白鼠按體重大小配成5對,每個對子內2只隨機接受兩種抗癌藥,以肉瘤的重量為指標,問2種不同藥物的抑瘤效果有無差別?實驗結果見表7-2。2022/7/2850(1)建立檢驗假設,確定檢驗水準H0:d=0,2種不同藥物的抑瘤效果相同 H1:d0,2種不同藥物的抑瘤效果不同 =0.052022/7/2851(2)選定檢驗方法,計算統(tǒng)計量本例選用配對t檢驗的方法2022/7/2852(3) 確定P值,作出統(tǒng)計推斷=n-
14、1=5-1=4查t界值表, t0.05/2,4=2.776. t0.005/2,4=5.598. t0.002/2,4=7.173. 得0.005P0.002,按=0.05水準,拒絕H0,接受H1 ,有統(tǒng)計學意義??梢哉J為兩種不同的藥物抑瘤效果不同.2022/7/2853 兩種測聲計A和B對噪聲的測定結果場地 測聲計A 測聲計B 1 87 86 2 65 66 3 74 77 4 95 95 5 65 60 6 55 53 7 63 62 8 88 85 9 61 59 10 54 55 練習2為比較兩種測聲計A和B對噪聲的測定結果,某人隨機測定了每個場地在同一時間用測聲計A和B對噪聲進行測定得下表,問兩地測聲計A和B對噪聲的測定結果是否不同?2022/7/2854選用配對樣本t 檢驗(1) 建立假設檢驗,確定檢驗水準H0:兩儀器檢驗結果相同,即d=0 H1:兩儀器檢驗結果不同,即d0 雙側=0.05(2) 計算統(tǒng)計量2022/7/2855場地測聲計A測聲計B 差值dd2 1 87 86 1126566 -11
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國鋁箔酚醛復合風道行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國車用多楔帶行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國汽車空氣管行業(yè)投資前景及策略咨詢研究報告
- 手工藝數(shù)字化檔案建設-深度研究
- 教育中文化多樣性的融合與沖突-深度研究
- 2025至2031年中國不銹鋼狗解剖臺行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國風冷冰箱控制器數(shù)據監(jiān)測研究報告
- 2025至2030年中國輪罩燈數(shù)據監(jiān)測研究報告
- 2025年中國鋼絲膠帶提升機市場調查研究報告
- 2025年中國玻璃/木板層架夾市場調查研究報告
- 2024版塑料購銷合同范本買賣
- 2024-2025學年人教新版高二(上)英語寒假作業(yè)(五)
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2024年安徽省中考數(shù)學試卷含答案
- 2025屆山東省德州市物理高三第一學期期末調研模擬試題含解析
- 2024年滬教版一年級上學期語文期末復習習題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學英語六年級下冊全冊教案
- 汽車噴漆勞務外包合同范本
- 微項目 探討如何利用工業(yè)廢氣中的二氧化碳合成甲醇-2025年高考化學選擇性必修第一冊(魯科版)
評論
0/150
提交評論