版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、xxxXXXXX學校XXXX年學年度第二學期第二次月考XXX年級xx班級姓名:班級:題號一、計算 題二、選擇 題三、填空 題總分得分評卷人得分一、計算題(每空? 分,共? 分)1、(2013江蘇南京鹽城一模)半球形介質截面如圖所示,O為圓心,單色光 a、b相互平行,從不同位置進入介質,光線a在O點恰好產生全反射。光線 b的入射角為45。,求:(1)介質的折射率;(2)光線b在介質中的折射角。b ;0G2、(2013徐州摸底)如圖所示的玻璃磚為半徑為R的半圓形玻璃磚上截取的一部分,其折射率為n, 一束光線垂直于 AB邊入射,當人射點 P距AB邊中點至少為多遠時, 曲面上將無光線透射 ?3、如圖所
2、示,4ABC為等腰直角三棱鏡的橫截面, ZC=90 , 一束激光a沿平行于AB邊射入棱鏡, 經一次折射后射到 BC邊時,剛好能發(fā)生全反射, 求該棱鏡的折射率 n.4、一束單色光由空氣入射到某平板玻璃表面,入射光及折射光光路如圖所示。求該單色光在玻璃中的臨界角5、一束單色光由左側射入盛有清水的薄壁圓柱形玻璃杯,圖13為過軸線的截面為3 ,求sin 0的值.槽,槽的中部扣著一個屋脊形透明整個罩子浸沒在液體中。槽底AB出的光與CD勺夾角在什么范圍時, 罩壁極薄)圖,調整入射角0 ,光線恰好在水和空氣的界面上發(fā)生全反射,已知水的折射率6、如圖所示,一個盛有折射率為值 的液體的罩ADB頂角(/ ADB為
3、30。,罩內為空氣, 的中點C處有一點光源,在紙面內從點光源發(fā) 光線可從液面上方射出。(液槽有足夠的寬度,7、被稱為光纖之父”的華裔物理學家高銀,由于在光纖傳輸信息研究方面做出了巨大貢獻,與兩位美國科學家共同榮獲 2009年諾貝爾物理學獎.如圖所示,AB是某光導纖維的一部 分,粗細均勻且彎曲成圓弧狀 .光自端面A垂直入射,在光纖內部側壁某處 M點恰好發(fā)生全反射,傳播方向改變了 90GE角;然后自另一端面 B折射出來.求:(1)該光導纖維的折射率;(2)出射光線與B端面的夾角.(已知M點以下圓弧所對應圓心角為15 )8、如圖K4912所示,用折射率n= 0 的玻璃做成內徑為 R外彳全為R=尤 R
4、的半球形空心球殼.一束平行光射向此半球的外表面,與中心對稱軸OO平行,試求球殼內部有光線射出的區(qū)域.9、如圖是北京奧運會期間安置在游泳池底部的照相機拍攝的一張照片,相機的鏡頭豎直向上.照片中,水立方運動館的用二4景象呈現在半徑r=11 cm的圓形范圍內,水面上的運動員手到腳的長度l=10 cm.若已知水的折射率 一下請根據運動員的實際身高估算該游泳池的水深h.(結果保留兩位有效數字 )em10、如圖K4910所示,在坐標系的第一象限內有一橫截面為四分之一圓周的柱狀玻璃體OPQ OP= OQ= R, 一束單BD方向射出,且與 x軸交色光垂直O(jiān)P射入玻璃體,在 OP面上的入射點為 A, OW 2
5、,此單色光通過玻璃體后沿 于D點,O氏0 R求:(1)該玻璃的折射率是多少?PQ面直接折射出來?(2)將OP面上的該單色光至少向上平移多少,它才不能從圖 K49- 10 11、光纖通信之所以能進行遠距離通信,主要是利用了光的全反射原理。光纖通信與金屬導線傳輸相比,主要優(yōu)點是 如圖所示,AB為一光導纖維的橫截面,其折射率為n,某一束光從 AB面入射后,入射角滿足一定條件,就能使入射光在光導纖維與空氣的界面上不斷發(fā)生全反射而傳到另一端。求入射角。應滿足的條件。12、光線從折射率 n=的玻璃進入真空中,當入射角為30時,折射角為多少?當入射角為多少時,剛好發(fā)生全反射?13、光線從折射率 門=聲 的玻
6、璃進入真空中,當入射角為30時,折射角為多少?當入射角為多少時,剛好發(fā)生全反射?6.0 cm長的14、如圖所示,置于空氣中的一不透明容器內盛滿某種透明液體。容器底部靠近器壁處有一豎直放置的線光源??拷€光源一側的液面上蓋有一遮光板, 始時通過望遠鏡不能看到線光源的任何一部分??吹骄€光源底端。再將線光源沿同一方向移動另一側有一水平放置的與液面等高的望遠鏡,用來觀察線光源。將線光源沿容器底向望遠鏡一側平移至某處時,8.0 cm,剛好可以看到其頂端。求此液體的折射率通過望遠鏡剛好可以矍運度遮光根緩 比源)15、如圖所示,折射率 n4 的半圓形玻璃磚置于光屏MN的上方,其平面 AB到MN勺距離為h=1
7、0cm。一束單色光沿圖示方向射向圓心0,經玻璃磚后射到光屏上的O點?,F使玻璃磚繞圓心O點順時針轉動,光屏上的光點將向哪個方向移動?光點離O點最遠是多少?16、某種透明物質制成的直角三棱鏡ABC折射率為n,角A等于30。一細束光線在紙面內從O點射入棱鏡,如圖所示,當入射角為a時,發(fā)現剛好無光線從 垂直于BC面射出。求:AC面射出,光線透明物質的折射率no光線的入射角a。(結果可以用a的三角函數表示 )HC117、如圖所示,AOB是由某種透明物質制成的 4圓柱體橫截面(O為圓心)折射率 J5今有一束平行光以 45的入射角向柱體的 OA平面,這些光線中有一部分不能從柱體的AB面上射出,設凡射到OB面
8、的光線全部被吸收,也不考慮OA面的反射,求圓柱AB面上 能射出光線的部分占 AB表面的幾分之幾?18、束平行光線在垂直于玻璃半圓柱體軸線的平面內,按如圖所示的方向射到半圓柱的平面上,已知光線與上表面的夾角為45。,求在半圓柱體的圓表面上有光線射出部分的弧長是多少?(已知玻璃半圓柱體的半徑為0. 2m,玻璃的折射率為收)19、一底面半徑為 R的半圓柱形透明體的折射率為盤=力,橫截面如圖所示,O表示半圓柱形截面的圓心。一束極窄的光線在橫截面內從 AOBfe上白勺A點以60。的入射角入射,求:該光線從進入透明體到第一次離開透明體時,共經歷的時間(已知真空中的光速為c,35口;計算結果用 R、n、c表
9、示)。20、如圖示,AOB是1/4圓柱玻璃磚的截面,玻璃磚的折射率 n=J5,一束平行光以45。入射角射入玻璃磚的 OA面,這些光線中只有一部分能從圓柱的 AB面 上射出,假設凡射到 OB面的光線全部被吸收,也不考慮OA面的 反射作用,試問 圓柱AB面上能射出光線部分占 AB表面的幾分之幾?21、如圖所示,用折射率 n=的玻璃做成一個外徑為 R的半球形空心球殼.一束皇R與口。平行的平行光射向此半球的外表面,若讓一個半徑為2的圓形遮光板的圓心過軸,并且垂直該軸放置.則球殼內部恰好沒有光線射入,問:臨界光線射入球殼時的折射角0 2為多大?球殼的內徑資為多少?22、某透明物體的橫截面如圖所示,其中A
10、BC為直角三角形,AB為直角邊,長度為 2L,乙=45口,ADC為一圓弧,其圓心在 AC邊的中點,此透明物體的折射率為 n = 2.0 .若一束寬度與AB邊長度相等的平行光從 AB邊垂直射入透明物體,試由光路圖畫出光線從 ADC 圓弧射出的區(qū)域,并求此區(qū)域的圓弧長度s.(不考慮經ADC圓弧反射后的光線)鏡的AB面上的N點,空中的光速 c=3. 0X(i )光在棱鏡中傳播的(ii )此束光進入棱鏡后23、如圖所示,ABC是三棱鏡的一個截面,其折射率為 n=1 . 5。現有一細束平行于截面的光線沿MN方向射到棱AN=NB=2cm,入射角的大小為& ,且51tH二.乃。已知真 108m/s,求:速率
11、;從棱鏡射出的方向和位置。(不考慮AB面的反射)24、如圖所示為用某種透明材料制成的一塊柱體形棱鏡的水平截面圖,FD為4圓周,圓心為O,光線從AB面入射,入射角0 1=60 ,它射入棱鏡后射在 BF面上的。點并 恰好不從BF面射出.求(1)畫出光路圖;(2)求該棱鏡的折射率n和光線在棱鏡中傳播的速度大小v(光在 真空中的傳播速度 c=3.0 x 108 m/s)25、如圖所示是一透明的圓柱體的橫截面,其半徑R=20em折射率n=J1 , AB是8今有一束平行光沿 AB萬向射向圓柱體,已知真空中光速為c=3. 0X10So求光在圓柱體中的傳播速度;條直徑入射光中有兩條光線折射后恰好過B點,求這兩
12、條光線間的距離.26、如圖所示,MNPQ1一塊截面為正方形的玻璃磚,正方形的邊長為30 cm,有一束很強的細光束AB射到玻璃磚的MQ面上,入射點為 巳該光束從B點進入玻璃磚后再經 QP面反射沿DC方向射出.其中B為MQ勺中點,/ ABM= 30 , PD= 7.5 cm , / CDN= 30 .試在原圖上準確畫出該光束在玻璃磚內的光路圖,并求出該玻璃磚的折射率.27、兩束平行的細激光束,垂直于半圓柱玻璃的平面射到半圓柱玻璃上,如圖所示。已知其中一條光線沿直線穿過玻璃,它的入射點是Q另一條光線的入射點為 A,穿過玻璃后兩2條光線交于P點。已知玻璃截面的圓半徑為R, O上2 , OP=J R求玻
13、璃材料的折射率。這兩個光斑之間的距離;28、如圖所示,半圓形玻璃磚的半徑為R,光屏PQ置于直徑的右端并與直徑垂直,一復色光與豎直方向成 a =30角射入玻璃磚的圓心,由于色光中含有兩種單色 光,故在光屏上出現了兩個光斑,玻璃對兩種單色光的折射率分別為巾=和n2g ,求:為使光屏上的光斑消失,復色光的入射角至少為多少29、如圖所示,AOB為半圓形玻璃磚截面, 玻璃的折射率為原工應,現有一束平行光線以45。角入射到 AB面上后,經折射從半圓面上的部分位置射出。試求半圓柱面能被照亮的部分與整個半圓柱面的面積之比。、所示是一種折射率 n=1.5的棱鏡,現有一束光線沿 MN的棱鏡的AB界面上,入射角的正
14、弦值為sini=0.75. 求:棱鏡中傳播的速率;棱鏡的光路圖,要求寫出簡要的分析過程.(不考慮返回30、如圖方向射到(1)光在(2)畫出此束光線進入棱鏡后又射出到AB和BC面上的光線).31、如圖所示,半圓玻璃磚的半徑R=10cm折射率為n=J ,直徑AB與屏幕垂直并接觸于 A點。激光a以入射角i =30。射向半圓玻璃磚的圓心O,結果在水平屏幕 MN上出現兩個光斑。求兩個光斑之間的距離Lo132、半徑為R的4透明圓柱體固定于地面上,透明體對紅光的折射率為n=2,如圖所示。今讓一束平行于地面的紅光射向圓柱體左側,經折射紅光照射到右側地面上。求圓柱體右側地面上的黑暗部分長度。33、如圖所示,直角
15、玻璃三棱鏡置于空氣中,已知 4= 60,ZC = 90 . 一束極細的光于AC邊的中點垂直 AC面入射,AC邊長為2a,棱鏡的折射率為 冷=也,光的折射角.光在棱鏡中傳播的時間(設光在真空中傳播速度為c)34、一底面半徑為 R的半圓柱形透明體的折射率為 制=7,橫截面如圖所示,O表示半圓柱形截面的圓心。一束極窄的光線在橫截面內從AOB邊上白勺A點以60。的入射角入射,求:該光線從進入透明體到第一次離開透明體時,共經歷的時間(已知真空中的光速為c,乖arcsiti -353;計算結果用 R n、c表示)。35、為測量一塊等腰直角三棱鏡ABC的折射率,用一束激光沿平行于BC邊的方向射向直角邊 AB
16、邊,如圖所示。激光束進入棱鏡后射到另一直角邊AC時,剛好能發(fā)生全反射。該棱鏡的折射率為多少?C.從該玻璃中射入空氣 發(fā)生反射時,藍光的臨界角較大D.以相同的入射角從空氣斜射入該玻璃中,藍光的折射角較大37、酷熱的夏天,在平坦的柏油公路上你會看到在一定距離之外,地面顯得格外明亮,仿佛是一片水面,似乎還能看 到遠處車、人的倒影,但當你靠近“水面”時,它也隨你靠近而后退,對此現象正確的解釋是()A.出現的是“海市蜃樓”,是由于光的折射造成的B. “水面”不存在,是由于酷熱難耐,人產生的幻覺C.太陽輻射到地面,使地表溫度升高,折射率大,發(fā)生全反射D.太陽輻射到地面,使地表溫度升高,折射率小,發(fā)生全反射
17、38、酷熱的夏天,在平坦的柏油公路上你會看到在一定距離之外,地面顯得格外明亮,仿佛是一片水面,似乎還能看 到遠處車、人的倒影,但當你靠近“水面”時,它也隨你靠近而后退,對此現象正確的解釋是()A.出現的是“海市蜃樓”,是由于光的折射造成的B. “水面”不存在,是由于酷熱難耐,人產生的幻覺C.太陽輻射到地面,使地表溫度升高,折射率大,發(fā)生全反射D.太陽輻射到地面,使地表溫度升高,折射率小,發(fā)生全反射39、abc為一全反射棱鏡,它的主截面是等腰直角三角形,如圖所示,一束白光垂直入射到ac面上,在ab面上發(fā)生全反射.若光線入射點 O的位置保持不變,改變光線妁入射方向,(不考慮自bc面反射的光線):A
18、,使入射光按圖中所示的順時針方向逐漸偏轉,如果有色光射出ab面,則紅光將首先射出B.使入射光按圖中所示的順時針方向逐漸偏轉,如果有色光射出ab面,則紫光將首先射出C.使入射光按圖中所示的逆時針方向逐漸偏轉,紅光將首先射出ab面D.使入射光按圖中所示的逆時針方向逐漸偏轉,紫光將首先射出ab面三、填空題(每空? 分,共? 分)40、如圖所示,是某光學儀器中所用的棱鏡,現有一束光線沿EF方向射到棱鏡的 AC界面上,經折射后在 AB界面上恰好發(fā)生全反射后,垂直于BC界面射出,則該棱鏡材料的折射參考答案、計算題1、解析: a光線發(fā)生剛好全反射用=-=-v/2sin Cb光線用折射定律sin a: 1si
19、n y-=n 2解析*當射到曲面上的光發(fā)生全反射時曲面上將無光線透射。圖中NFtf 0等于臨界角,即設人射點P 距AB邊中點為L,則有sinZP0J0=L/Ro聯立 解得L-R/n.2、3、如圖sin 45口豌=sin ct(1分)sin 1( 1 分)C + & = 90口(1分)解得:W =2(1 分)4、喀二osiii3O0(2分)由皿Y1得C = 45。曾上(2分)5、解析:當光線在水面發(fā)生全反射時有sinC=(3分)當光線從左側射入時,由折射定律有(3分)聯立這兩式代入數據可得sin 0 = 3(3分)6、由如圖,有一條光線從 C點射向DB時,在M點折射后進入液體中,射向空氣時在N點
20、發(fā)生全反射。(畫出光圖分)siti C =入射角為C,有 短,/八將(1分)可知/ DNM45由題意知/ NDM75 ,故/ DMN60 , 2=30(2分)溝二日由折射定律31114,所以a=45(2分)k = 130-105-45 = 30(1分)故從點光源發(fā)出的光與 CD勺夾角在030范圍內時光線可從液面上方射出7、【解析】(1)光在M點恰好發(fā)生全反射,傳播方向改變了 90。角,可知臨界角C=45(4 分)光纖的折射率收=島=&.(4分)(2)光自M點傳到B端面,其入射角8 = 3。(3分)設從B端面折射后,出射光線與B端面成口角.CIK-iSi) _有小,一 (4分)解得段三45。.(
21、3分)【答案】. V 一 (2)458、以OO為中心線,上、下各 60的圓錐球殼內有光線射出解析如圖所示,設光線由aa射入外球面,沿ab方向射向內球面,剛好發(fā)生全反射, 則sin C=,解得C= 45在 Oab中,Oa=、: R, Ob= R由正弦定理得則 sin r則。=C- r =45 - 3015又/ O Oa=issws,由 sir =n,得 sin i也=nsin r = _即 i =45則/ O Ob=i + 0 =45 +15 = 60當射向外球面的入射光線的入射角小于i =45。時,這些光線都會射出內球面.因此,在OO為中心線,上、下各 60的圓錐球殼內有光線射出.(5分)2.
22、6 m都算對)(5分)9、【解析】設照片圓形區(qū)域的實際半徑為R,運動員的實際長為 L, TOC o 1-5 h z 由折射定律nsinq=自算9。(4分)a _ x幾何關系sin 一 ,1丁 /曰h二人-1、4廣八、得 v (4分)取 L=2.2 m,解得 h=2.1 m.(1.6 m【答案】2.1 m(1.6 m 2.6 m皆對)10、(2)0.077 ROA 解析(1)如圖所示,設光在 PQ面上的入射角為0 1,折射角為0 2.由幾何關系得:sin e 1= C =乙,0 2 = 60 ,53W el 1根據折射定律 至理電2 =設解得折射率n=一1苴OP面的入 臨界角的正弦 sin C=
23、 = 3從OF射入玻璃體的光在PQ面的入射角等于臨界角時,剛好發(fā)生全反射而不能從PQ面直接射出.設光在近射點為 M在PQ面的反射點為 N,則OM OfSin C= -: RW R故至少向上平移的距離d=OM- OA 3 R- 2弋0.077 R11、口容量大、衰減小、抗干擾能力強。(2分)C,由折射定律得2 2如圖所示,設光線在光導纖維與空氣的界面上發(fā)生全反射的臨界角為1年=(2分)sin C由幾何關系得=90a-ZCsmr = cos C = Jl - sin.,C = jl -二三Jr? -1VMM(2 分)由折射定律得,sin G用=sin rarcsiti(2分)日應滿足:自Hare
24、sin寸精一 1(1分)12、用威力30= 1丈行Q比= 45sinC=lxsin90 C = 4513、打三二丁二;s二二(2分)wsinC = lxSm90cC=450射到遮光板邊緣 O的那條光線的入射角最小。O點液面的法線為 OO,則ks5u14、解:當線光源上某一點發(fā)出的光線射到未被遮光板遮住的液面上時, 若線光源底端在 A點時,望遠鏡內剛好可以看到此光源底端,設過ZAOC =a(2分)其中為此液體到空氣的全反射臨界角。由折射定律有1Sffl L = n(2分)同理,若線光源頂端在 片點時,通過望遠鏡剛好可以看到此光源頂端,則/耳設此時線光源底端位于b點。由圖中幾何關系可得ABSina
25、i-(2分)聯立式得AB(2分)由題給條件可知E4-=6.0 cm代入式得(2分)15、光屏上的光點將向右移動。(1分)如圖,設玻璃磚轉過 5角時光點離 O點最遠,記此時光點位置為A,此時光線在玻璃磚的平面上恰好發(fā)生全反射,臨界角為C.由折射定律有(1分)由幾何關系知,全反射的臨界角On =45分)工光點A到O的距離htana力=10cm(1分)弒aO16、解:由題意可知,光線射向 鏡射出,光路圖如下圖。AC面恰好發(fā)生全反射,反射光線垂直于BC面從棱設該透明物質的臨界角為C,由幾何關系可知C -6= -SO iinC r 1 分)n由幾何關系得:r=30(1分)由折射定律:通=ginysml
26、a =/從O點射入的光線,折射角為 r,根據折射定律有:解得r =30 從某位置P點入射的光線,折射到 AB弧面上Q點時,入射角恰等于臨界角 C,有:c 15 m C =依代入數據得:045 PQ8/ 3=180 90 - r=15所以能射出的光線區(qū)域對應的圓心角尸二時-A”45 _ 1能射出光線的部分占 AB面的比例為90218、解:設光線以 45。射到半圓柱的平面上時的折射角為所以由折射定律得:sin 45-;= Esin日.門 sin 4501sm B -二解得:制 2 ,即8 二 30設從半圓柱體平面上的 F、R兩點射入的光線, 經折射后從玻璃中射向圓柱體圓表面上的(2) 2 分工點和
27、B點時的入射角恰好為臨界角口,如圖所示。用=-C = arcsm = 45由于 sin,得:同所以由圖及幾何知識可求得:-(3) 2 分(4) 2 分由題意分析可知,在 次=15、上75 ,即Q4.=9。所對應的圓柱體圓表面 AB上有光線射出,且有光線射AB = x 2?求二 0,31網出部分的弧長4(5) 2分19、解答:設此透明物體的臨界角為C,sin (7 =依題意翅,所以C 二2口(2分)sin SO w =當入射角為有口口時,由 sin/得到折射角:3口口 Q分)即此時光線折射后射到圓弧上的C點,在C點的入射角為60。,大于臨界角,會發(fā)生全反射往后光線水平反射至圓弧上的D點并在D點發(fā)
28、生全反射,再反射至 B點,從B點第一次射出 TOC o 1-5 h z 在透明體內的總徑長為:S=3R(2分)P =光在透明體內的速度 地(2分)s 3nRl =經歷的時間R 白(1分)20、解: sinC=1/nC=45設射到D點的光線剛好折射到B 點 sin 0 =0.5 , 3 =30 (1分)射E點以上的光線射到圓弧面被全反射,弧AB.21、由題圖和幾何知識(2分)(2分)D點以下的光線射到 OB面上被吸收.設射到E點的光線折射到 P點剛好全反不難求出 0 =15 ,所以弧PB=6由折射定律聯立解出0 2=30S1D對臨界光線11分)R _焚sin(180o-Q sin%在題圖4 Oa
29、b中,由正弦定理得:(2分) TOC o 1-5 h z 聯立解出(1分)22、如右圖,作出兩條邊緣光線,所求光線射出的區(qū)域為EDF. (1分)n 1sin =從圓弧ADC射出的邊緣光線對應的入射角等于材料的臨界角白,因 也(1分)故日=30 .由幾何關系得:圓弧EDF長度為s = 21分)3Ls =故所求 3 (1分)W* N.ljicllj1 M/tK-. 時HtHN上比jE% M用tf人代爆K的析腫病為rUKI N .= 411MlWni fi.T5 Is.|.|W * -=-:19 rr2 3141 u S 必整比紋/ w HARntiHmwjta p t萬于*必/配由*小JL何美鼻鼻
30、.死於入象,毗陽上陰入肥京力:日 4 1 h baa i h ailiaa d i , I r I , n i ihd 由,*!: r d 4 i b 9 3黨蛭從用械到修笈4履射對供id界的力cm,1 i jf尸n IS 2淅門無戲bc耐鈍及牛餐反H .加冊可用尢比將力聯庚民k死方J(h I 購 i I * 0(1? Hl 1Ml ,F +-1 r 卡,F q I- I F + FB4 9-i .mi F- I P-i Fil BH I - -4 + B+ FB * !弓 hS Fl ” jC0 門二、irtflO E .J ent II ,HI irBinvaiBiran ! i iavn
31、 1rm rreiiTirai an 1 in hi Q23、評*L J S r,昌上仆.二.L 1式善l外24、解析:(1) (2分)光路圖如圖所示.(2)設光線在AB面的折射角為。2,折射光線與 OD勺夾角為C,U 1則 n .2由題意,光線在 BF面恰好發(fā)生全反射,sin 0= ,由圖可知,0 2+0= 90。聯立以上各式解出n 1.3(或2)(4分又 n=,故解出 v2.3 x 108 m/s(或 了 x 108 m/s) .(3 分)25、 解:(3分)光在圓柱體中的傳播速度V- - = x10gitl/s(3分)(6分)設光線PC經折射后經過,光路圖如圖所示由折射定律有:sin白s
32、in fi(2分)又由幾何關系有:二 (1分)解得 二(1分)關于直線AB的對稱光線 Q,折射后也必定過 B點,所以,直線PC與直線 Q叱間的距離:d=2 - RSin a =20拒 cm(2分)26、解析 找出B點關于界面QP的對不K點E,連接ED交QP于F點,即光束在F點發(fā)生反射,所以其光路圖如圖所示.(3分)由幾何關系得 TOC o 1-5 h z DE=機。工= 37,5 (cm)(2 分)DPQEsin r = DU = 0,6(1 分)sini由折射定律得 n= sin =1,44( 3分)答案 1.4427、解 作出光路如圖所示,其中一條光線沿直線穿過玻璃,可知 O點為圓心; (2 分)另一條光線沿直線進入玻璃,在半圓面上的入射點為B,入射角設為。1,折射角設為02則金得。1=300(2分)因0已4日尺由幾何關系知 BP=R,則折射角0 2=600(2分)sin a sin 600 嶼得玻璃的折射率為n=二1引” =1.73(3分)由折射定律28、作出光路如圖所示,由折射定律有: 八I g巧界 al S)卷ni =式煞A , n2 =甩曰代入數據得:al甌號合2血=席庫30口=加這3??诮獾茫? i=453 2= 60正故 ab= Pb Pa= Rtan4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴陽職業(yè)技術學院《區(qū)域分析與區(qū)域規(guī)劃》2023-2024學年第一學期期末試卷
- 2025年云南建筑安全員B證(項目經理)考試題庫
- 貴陽人文科技學院《測量平差》2023-2024學年第一學期期末試卷
- 廣州中醫(yī)藥大學《通信經濟學》2023-2024學年第一學期期末試卷
- 2025云南省安全員C證考試(專職安全員)題庫附答案
- 2025年海南省安全員知識題庫及答案
- 廣州應用科技學院《大數據案例分析》2023-2024學年第一學期期末試卷
- 2025安徽省安全員-B證考試題庫附答案
- 2025上海市安全員《C證》考試題庫
- 《組合圖形面積》課件
- 2025年沈陽水務集團招聘筆試參考題庫含答案解析
- 2025年高三語文八省聯考作文題目詳解:7個立意、15個標題、5個素材
- 《科學與工程倫理》課件-1港珠澳大橋工程建設中的白海豚保護相關案例分析
- 肘關節(jié)鏡手術
- 浙江省杭州市錢塘區(qū)2023-2024學年四年級上學期數學期末試卷
- 2024年北師大版四年級數學上學期學業(yè)水平測試期末測試卷(含答案)
- 天車租賃合同范例
- 多任務并行處理中的計算資源分配
- 第二單元《第8課循環(huán)結構-for循環(huán)》教學實錄 -2023-2024學年浙教版(2020)初中信息技術八年級上冊
- 心肺復蘇術課件2024新版
- 2023-2024公需科目(數字經濟與驅動發(fā)展)考試題庫及答案
評論
0/150
提交評論