旋轉(zhuǎn)曲面面積_第1頁
旋轉(zhuǎn)曲面面積_第2頁
旋轉(zhuǎn)曲面面積_第3頁
旋轉(zhuǎn)曲面面積_第4頁
旋轉(zhuǎn)曲面面積_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、關(guān)于旋轉(zhuǎn)曲面的面積第一張,PPT共十二頁,創(chuàng)作于2022年6月則, 且當(dāng)上的連續(xù)函數(shù)時(shí),若令一、微元法現(xiàn)在恰好要把問題倒過來: 若所求量 是分布在區(qū) 或者說它是該區(qū)間的端點(diǎn) x 的函數(shù), 即第二張,PPT共十二頁,創(chuàng)作于2022年6月其中 f 為某一連續(xù)函數(shù), 而且當(dāng)時(shí),而且當(dāng) x = b 時(shí),適為最終所求的值. 那么只要把計(jì)算出來, 就是該問題所在任意小區(qū)間上, 若能把 的微小增量近似表示為的線性形式 第三張,PPT共十二頁,創(chuàng)作于2022年6月在一般情況下, 要嚴(yán)格檢驗(yàn)以上方法通常稱為微元法, 在用微元法時(shí), 應(yīng)注意:求的結(jié)果.(2) 微元法的關(guān)鍵是正確給出的近似表達(dá)式為的高階無窮小量不是

2、一件容易的事.(1) 所求量 關(guān)于分布區(qū)間必須是可加的.第四張,PPT共十二頁,創(chuàng)作于2022年6月這段曲線繞 x 軸旋轉(zhuǎn)一周得到旋轉(zhuǎn)曲面(如下圖).設(shè)平面光滑曲線 C 的方程為二、 旋轉(zhuǎn)曲面的面積通過 x 軸上點(diǎn) x 與 分別作垂直于 x 軸的平 第五張,PPT共十二頁,創(chuàng)作于2022年6月其中由于時(shí), 此狹帶的面積近似于一圓臺的側(cè)面積, 即面, 它們在旋轉(zhuǎn)曲面上截下一條狹帶. 當(dāng)很小第六張,PPT共十二頁,創(chuàng)作于2022年6月因此由的連續(xù)性可以保證所以得到如果光滑曲線由參數(shù)方程第七張,PPT共十二頁,創(chuàng)作于2022年6月給出, 且則曲線 C 繞 x 軸旋轉(zhuǎn)所得旋轉(zhuǎn)曲面的面積為例1求將橢圓繞 x 軸旋轉(zhuǎn)所得橢球面的面積.解 將上半橢圓寫成參數(shù)方程第八張,PPT共十二頁,創(chuàng)作于2022年6月令第九張,PPT共十二頁,創(chuàng)作于2022年6月第十張,PPT共十二頁,創(chuàng)作于2022年6月例2 求心臟線繞極軸旋轉(zhuǎn)所得曲面的面積.當(dāng)然,這也可從上面已求得的橢球面的面積而得,解 將曲線用參數(shù)方程表示:于是請讀者自行指出這應(yīng)該怎么做?第十一張,PPT共十二頁

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論