版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.PAGE :.;PAGE 8 HYPERLINK sciencedirect/science?_ob=ArticleURL&_udi=B6TX4-4YTD78P-5&_user=10&_coverDate=08%2F01%2F2021&_alid=1407848835&_rdoc=3&_fmt=high&_orig=search&_cdi=5580&_sort=r&_st=4&_docanchor=&_ct=1316&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3b44b90cba6b4de50b8358a154704d3
2、7 A simple synthesis of Fe3O4 powders and their HYPERLINK sciencedirect/science?_ob=ArticleURL&_udi=B6TW0-4Y7P8VF-1&_user=10&_coverDate=05%2F03%2F2021&_alid=1407848835&_rdoc=11&_fmt=high&_orig=search&_cdi=5548&_sort=r&_st=4&_docanchor=&_ct=1316&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md
3、5=60fbed4b4fd8716afaa8c9cfd04fc033 Structure, magnetic and electrical transport properties K.L. Liu* Corresponding author. Address: Department of Physics, Zhoukou Normal University, Zhoukou 466000, PR China. address:liukuili163, Y. D. Du, C.Y.LiDepartment of Physics, Zhenzhou electicl
4、power collage zhang haiyang Peoples Republic of China.ABSTRACT Fe3O4 powders with highly crystalline have been synthesized by a sol-gel auto combustion synthesis method accompanying thermal process. The phase structures, morphologies of Fe3O4 have been characterized by x-ray diffraction (XRD) and sc
5、anning electron microscopy (SEM) equipped with energy dispersive x-ray spectrometer (EDX). The results show that complete and highly crystalline nature magnetite powders can be obtained. Furthermore, the room-temperature magnetizations and the resistance of Fe3O4 powders were also measured. The maxi
6、mum magnetization of sample S1, S2and S3 is 88.3, 87.32 and 89.4emu/g at the applied magnetic field 5kOe, respectively, which are larger than the saturation magnetization of the bulk -Fe2O3 (76emu/g). It is proved further that Fe3O4 powders can be synthesized by the citrate-nitrate sol-gel auto comb
7、ustion reaction method. The preliminary reaction mechanism is also discussed.Keywords: Fe3O4; Magnetic materials ; Sol-gel preparation; Half metallic1. IntroductionMagnetite, Fe3O4, is ferromagnetic inverse spinel structure with an anomalous high Curie temperature of 860 K and an exceptionally high
8、conductivity 1. In addition, the band-structure calculations for magnetite have indicated that Fe3O4 is half-metallic and the conduction electrons are 100% spin polarized 2. These properties make magnetite to be applied extensively in magnetoresistive devices, magnetic storage and biomedicine 3-7.Th
9、e nanocrystalline magnetite with a uniform particle size has been successfully synthesized by chemical co-precipitation 8,9, thermal decomposition10, hydrothermal reaction 11 and solgel 12 and other method 13. In this work, uniform Fe3O4 powders were synthesized by the citrate-nitrate sol-gel auto c
10、ombustion reaction method. The sol-gel auto combustion synthesis method for preparing nanoparticles of ferrite spinels such as MFe2O4 (M=Ni, Zn, Co) 14-18 has been developed successfully, which can be an alternative method to those listed above. In this method, intermediate decomposition and calcini
11、ng steps are not involved. Moreover, it is easy to control precisely the stoichiometric composition and crystallite size, which have important effects on the magnetic properties and applications of the magnetite. Here, for the first time the synthesis of ferrite spinel Fe3O4 powders, using citric ac
12、id as reducing agent and iron nitrate as starting material, is reported, and the magnetizations and resistances of the samples are also carried out.2. Experimental procedureThe chemical materials Fe(NO3)39H2O and citric acid with analytical grade were employed as raw materials to prepare Fe3O4 ferri
13、te. An aqueous solution containing ferric nitrate (0.8M) was prepared first. With constant stirring, an appropriate amount of citric acid was added to this solution to produce clear cationic solution. In order to prepare the perfect Fe3O4 powders, the different molar ratio of iron nitrate to citric
14、acid was introduced. S1, S2, and S3 were used to present the samples synthesized at the different molar ratio of 1:1, 2:1 and 3:1, respectively. The resulting solution was evaporated at 348K and stirred to form a transparent sol. Then, the transparent sol was dried at 403K for half an hour to furthe
15、r remove water. The sol turned into a viscous brown gel. Finally, the obtained gel was not heated until ignited point was observed. The dried gel was burnt in a self-propagating combustion manner until all the gel was burnt out completely to swell into a fluffy mass, which transformed into powder at
16、 the slightest touch. The as-prepared chocolate brown powder was then calcined at 923K for 10 h in argon atmosphere and the resulting black Fe3O4 powders were obtained.Phase composition of the samples was performed by x-ray powder diffraction (XRD, Philips Xpertpro). The morphology and composition o
17、f the samples were examined by scanning electron microscopy (SEM) equipped with energy dispersive x-ray spectrometer (EDX). The resistances and the magnetizations of all samples were measured in a commercial Physical Property Measurements System (Quantum Design PPMS). 3. Results and discussionFig. 1
18、 displays XRD patterns of the three samples prepared by the combustion reaction method at the different molar ratio of iron nitrate to citric acid. The position and relative intensity of all diffraction peaks match well with the cubic phase magnetite of Fe3O4 (JCPDC 19-0629) with lattice parameter o
19、f a=8.3960 . No other phase is detected in Fig. 1, which indicates that the final products consist of highly crystalline and single-phase Fe3O4. But the maghemite ( -Fe2O3) is easily formed due to oxidation during the formation of Fe3O4 and it has almost the same XRD pattern of Fe3O4, which gives ri
20、se to difficulty to identify the kind of the oxide only by the XRD patterns due to the similarity in lattice constant value between them. In order to clarify the phases exhibited in the powders, spot energy dispersive X-ray spectroscopy (EDX) analysis (Fig. 2(a) was used to confirm the pure nature o
21、f the Fe3O4 product: only Fe and O elements were detected from the product, the atom ratio of these elements Fe: O is 45.91:54.09, very similar to the theory ratio 3:4. The EDX date is consistent with the XRD analysis and further proves the formation of pure cubic phase of Fe3O4 product.The morpholo
22、gies and microstructures of the Fe3O4 were further characterized by SEM. Fig. 2 shows a typical overall morphology of Fe3O4 powders synthesized with this method. From the images, one can see that the product is consist of irregular and rough spherical morphologies and that the average size of partic
23、le is about 300-500 nm, suggesting that the grain aggregation exists. In addition, the extremely compact aggregations of grains in sample S1 synthesized at the molar ratio of 1:1 occur. Comparing with S1 sample, the distribution of the grains in the sample S2 and S3 is just mildly aggregate. Especia
24、lly, the grains in the sample S3 disperse uniformly. Based on these phenomena, the molar ratio of iron nitrate to citric acid can be selected reasonably.On the other hand, room temperature magnetizations and resistance of Fe3O4 powders were also measured by PPMS. The hysteresis loops of all Fe3O4 po
25、wders at room temperature show a ferromagnetic behavior with high magnetization as shown in Fig. 3. The maximum magnetization of sample S1, S2and S3 is 88.3, 87.32 and 89.4emu/g at the applied magnetic field 5kOe, respectively, which are larger than the saturation magnetization of the bulk -Fe2O3 (7
26、6 emu/g) 19, suggesting that the maximum magnetization of the resulting powders showed a strong independence on the fuel-to-oxidant ratio employed. Magnetization remanence and coercivity presented in the enlarged part are about 5emu/g and 50Oe, respectively. Compared to the corresponding magnetizati
27、on value of bulk magnetite (90100emu/g) and the coercivity value of the bulk Fe3O4 (115150Oe), Fe3O4 powders exhibit a smaller values, which may be attributed to the nanosize effect and their irregular and rough spherical structures, respectively. The temperature dependence of resistance of the sint
28、ered samples is shown in Fig.4. Resistance was measured by a conventional four-probe technique. It is obvious that the sample exhibits semiconductor behavior in the whole chosen temperature range without any transition. With decreasing temperature, the resistance increases monotonically from 300 to
29、110 K, and then increases markedly with decreasing temperature below 110 K, which may be ascribed to the high degree of spin polarization at 110K for half metallic Fe3O420,21. Both of them are strong indicators of good stoichiometry and high crystalline phase of the Fe3O4 powders 22. In the chemical
30、 reaction process, citric acid, acting as reducing agent, plays an important role. When the dried gel was burnt in a self-propagating combustion manner, part of citric acid radical ion was used as the fuel of combustion reaction to decompose nitric acid radical ion 23 and another citric acid radical
31、 ion was used as reducing agent to reduce Fe (III) to Fe3O424. In a word, the reaction mechanism is complex, so further investigation is needed to better understand the formation of these unique materials.4. Conclusions In summary, a complete and uniform magnetite powder with particle size within 30
32、0-500 nm has been successfully synthesized through citrate-nitrate sol-gel combustion reaction method. The results of the XRD patterns, the EDX map, the hysteresis loops and the resistance versus temperature curves show that these samples are entirely Fe3O4 single phase with cubic spinel structure.
33、Therefore, this synthetic method may be a promising technique for preparation of Fe3O4. AcknowledgementsThis work was supported by the Science Foundation from the HeNan province department of education (Grant No. 2021B430029).References1 Coey JMD, Berkowitz AE, Balcells Ll, Putris FF, Parker FT. App
34、l. Phys. Lett 1998; 72:734 -736.2 Zhang Z, Satpathy S. Phys. Rev. B 1991; 44: 13319-13331.3 Shen W, Shi MM, Wang M. Mater. Chem. Phys. 2021; 122:588-594.4 Park JO, Rhee KY, Park SJ. Appl. Surf. Sci. 2021; 256:6945-6950.5 Wang H, Hu P, Pan DA et al.J. Alloys Compd. 2021; 502:338-340.6 Zhang JC, Shen
35、WQ, Zhang ZW, et al. Mater. Lett. 2021; 64:817-819.7 Mi WB, Ye TY, Jiang EY, Bai HL. Thin solid films. 2021; 518:4035-4040.8 Luo WS, Kelly SD, Kemner K M, et al. Environ. Sci. Technol. 2021;43: 75167522.9 Gee SH, Hong YK, Erickson DW, Park MH, Sur JC. J. Appl. Phys. 2003; 93:7560-7562.10 Sapieszako
36、RS, Matijevic E. J.Colloid Interface Sci. 1980; 74:405-422.11 Li Y, Liao H, Qian Y. Mater. Res. Bull. 1998; 33:841-84412 Sun S, Zeng H, J. Am. Chem. Soc. 2002; 124:8204-8205.13 Ogawa T, Takahashi Y, Yang H, Kimura K, Sakurai M, Takahashi M, Nanotechnol. 2006; 17:5539-5543.14 Seyyed Ebrahimi SA, Azadmanjiri J. J. Non-Crystalline Solids. 2007; 353: 802-804. 15 Shobana MK, Rajendran V, Jeyasubramanian K, Kumar NS, Mater. Lett. 2007; 61:2616-2619.16 Rao BP, R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度路面施工環(huán)境保護合同范本4篇
- 二零二五版跨境電商智能物流系統(tǒng)租賃合同3篇
- 二零二五年度材料買賣合同范本:石油化工材料購銷合作協(xié)議書2篇
- 二零二五年度版權合同管理崗位職責解析3篇
- 年度全熱風載流焊機戰(zhàn)略市場規(guī)劃報告
- 二零二五版導游人員國際交流聘用合同3篇
- 2025年度園林植物病蟲害防治勞務合同4篇
- 2024版建筑工程施工安全控制合同書一
- 二零二五年度搬家運輸貨物貨物包裝材料供應合同3篇
- 二零二五年個人商業(yè)房產(chǎn)抵押擔保合同樣本3篇
- GB/T 14864-2013實心聚乙烯絕緣柔軟射頻電纜
- 品牌策劃與推廣-項目5-品牌推廣課件
- 信息學奧賽-計算機基礎知識(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質及危險特性表
- 數(shù)字信號處理(課件)
- 公路自然災害防治對策課件
- 信息簡報通用模板
- 火災報警應急處置程序流程圖
- 耳鳴中醫(yī)臨床路徑
- 安徽身份證號碼前6位
- 分子生物學在動物遺傳育種方面的應用
評論
0/150
提交評論