一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例備課講稿_第1頁(yè)
一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例備課講稿_第2頁(yè)
一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例備課講稿_第3頁(yè)
一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例備課講稿_第4頁(yè)
一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例備課講稿_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Good is good, but better carries it.精益求精,善益求善。一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例-一個(gè)神經(jīng)網(wǎng)絡(luò)的EA的示例(含源碼)Combo_Right.mq4軟件簡(jiǎn)介:去年年底結(jié)束的國(guó)際大賽的第一名為Better所奪得他采用的就是神經(jīng)網(wǎng)絡(luò)原理的EA這使得用神經(jīng)網(wǎng)絡(luò)方法做EA成為不少人關(guān)注的焦點(diǎn)這里翻譯一篇采用神經(jīng)網(wǎng)絡(luò)做EA的不錯(cuò)的示例文章當(dāng)然附有源碼是吸引人的地方不過(guò)也許作者提出了研究神經(jīng)網(wǎng)絡(luò)EA的一些思考更為值得注意作者提出了1?!叭绻酗w機(jī),為什么還要教人類去飛?”意思是研究是經(jīng)網(wǎng)絡(luò)不必從零起步。MT4里已有了不錯(cuò)的“遺傳算法”文中介紹了如何利用MT4已有的“遺傳算

2、法”2。大家都說(shuō)做單子最重要的是“順勢(shì)而為”,但更需要解決的是“一個(gè)基于趨勢(shì)的交易系統(tǒng)是不能成功交易在盤整(sidewaystrends),也不能識(shí)別市場(chǎng)的回調(diào)(setbacks)和逆轉(zhuǎn)(reversals.,反向走勢(shì))!”這可是抓到不少人心中的“癢處”,有多少人不是到了該逆勢(shì)時(shí)沒(méi)轉(zhuǎn)向而產(chǎn)生虧損呢?3。訓(xùn)練神經(jīng)網(wǎng)絡(luò)需要用多長(zhǎng)的歷史數(shù)據(jù),提出了并不是用的歷史數(shù)據(jù)越長(zhǎng)越好,另外也不是訓(xùn)練的間隔越短越好,文中提出了什么情況下有需再訓(xùn)練它。等等。下面是譯文和作者的源碼Theproblemisstatedforthisautomatedtradingsystem(ATS)asfollows:(ATS)自

3、動(dòng)的(智能的,采用神經(jīng)網(wǎng)絡(luò)的)交易系統(tǒng)的問(wèn)題表述如下Letsconsiderwehaveabasictradingsystem-BTS.ItisnecessarytocreateandteachaneuralnetworkinorderittodothingsthatcannotbedonewiththeBTS.ThismustresultincreationofatradingsystemconsistingoftwocombinedandmutuallycomplementaryBTSandNN(neuralnetwork).如果我們有一個(gè)(BTS,basictradingsystem),

4、同時(shí)需要用創(chuàng)建一個(gè)神經(jīng)網(wǎng)絡(luò)系統(tǒng)并教會(huì)它做BTS所不能做的事,按這個(gè)思路就是要?jiǎng)?chuàng)建這樣一個(gè)交易系統(tǒng)它由互相補(bǔ)充(配合)的兩部分組成,BTS和NN(神經(jīng)網(wǎng)絡(luò))。Or,theEnglishofthisis:Thereisnoneedtodiscoverthecontinentsagain,theywerealldiscovered.Whytoteachsomebodytorunfast,ifwehaveacar,ortofly,ifwehaveaplane?呃,英語(yǔ)說(shuō),我們不需要再去發(fā)現(xiàn)“新大陸”,它們是已經(jīng)存在的東西!進(jìn)一步說(shuō),如果我們已經(jīng)有了汽車,那為什么還要教人如何跑得快?如果有飛機(jī),為什么還

5、要教人類去飛?Oncewehaveatrend-followingATS,wejusthavetoteachtheneuralnetworkincountertrendstrategy.Thisisnecessary,becauseasystemintendedfortrend-basedtradingcannottradeonsidewaystrendsorrecognizemarketsetbacksorreversals.Youcan,ofcourse,taketwoATSes-atrend-followingoneandacountertrendone-andattachthemtot

6、hesamechart.Ontheotherhand,youcanteachaneuralnetworktocomplementyourexistingtradingsystem.一旦有一個(gè)趨勢(shì)交易系統(tǒng)的ATS,我們僅需要教會(huì)這個(gè)神經(jīng)網(wǎng)絡(luò)如何逆勢(shì)(反趨勢(shì))交易的策略。這一點(diǎn)是非常必要的,因?yàn)橐粋€(gè)基于趨勢(shì)的交易系統(tǒng)是不能成功交易在盤整(sidewaystrends),也不能識(shí)別市場(chǎng)的回調(diào)(setbacks)和逆轉(zhuǎn)(reversals.,反向走勢(shì))!當(dāng)然,你可以采用兩個(gè)ATS,一個(gè)基于“趨勢(shì)”,一個(gè)基于“反趨勢(shì)”(逆向),然后把它們掛到同一圖表上。另一個(gè)辦法是,你能教會(huì)神經(jīng)網(wǎng)絡(luò)如何與你現(xiàn)有的系統(tǒng)“

7、互補(bǔ)地”協(xié)調(diào)工作!Forthispurpose,wedesignedatwo-layerneuralnetworkconsistingoftwoperceptronsinthelowerlayerandoneperceptronintheupperlayer.為實(shí)現(xiàn)這個(gè)目標(biāo),我們?cè)O(shè)計(jì)了一個(gè)兩層的神經(jīng)網(wǎng)絡(luò),下層有兩個(gè)感知機(jī)(perceptrons)上層有一個(gè)感知機(jī)。Theoutputoftheneuralnetworkcanbeinoneofthesethreestates:這個(gè)神經(jīng)網(wǎng)絡(luò)的能輸出下列三種狀態(tài)之一Enteringthemarketwithalongposition(Entering

8、)市場(chǎng)是處在多向倉(cāng)Enteringthemarketwithashortposition(Entering)市場(chǎng)是處在空向倉(cāng)Indeterminatestate不確定的,(不明確的,模糊的)狀態(tài)Actually,thethirdstateisthestateofpassingcontrolovertotheBTS,whereasinthefirsttwostatesthetradesignalsaregivenbytheneuralnetwork.實(shí)際上,第三種狀態(tài)是就把控制權(quán)交給BTS,反之前兩種狀態(tài)是交易信號(hào)由神經(jīng)網(wǎng)絡(luò)給出。Theteachingoftheneuralnetworkisdi

9、videdintothreestages,eachstageforteachingoneperceptron.Atanystage,theoptimizedBTSmustbepresentforperceptronstoknowwhatitcando.神經(jīng)網(wǎng)絡(luò)的“教育”分成三步驟,每一步驟“教育”一個(gè)感知機(jī),在任何一步驟,這個(gè)優(yōu)化了的BTS必須存在為的是“感知機(jī)們”知道它自己能做什么。Theseparateteachingofperceptronsbyageneticalgorithmisdeterminedbythelackofthisalgorithm,namely:Theamountof

10、inputssearchedinwiththehelpofsuchalgorithmislimited.However,eachteachingstageiscoherentandtheneuralnetworkisnottoolarge,sothewholeoptimizationdoesnottaketoomuchtime.感知機(jī)們分別的“教育”由遺傳算法來(lái)承擔(dān),由于這樣的算法的缺乏,換句話說(shuō),搜索到的這樣的算法有限,限制了“輸入”(參數(shù)變量)的數(shù)量(借助這樣算法得到的參數(shù)變量的值),然而,每一步驟的“教育”是密切配合補(bǔ)充的。(因此效果還是不錯(cuò)),這樣這個(gè)神經(jīng)網(wǎng)絡(luò)不會(huì)太大,整個(gè)的優(yōu)化也不會(huì)

11、耗費(fèi)太多的時(shí)間。Theveryfirststage,precedingtheteachingofanNN,consistsinoptimizationoftheBTS.在“教育”NN之前的一步是對(duì)BTS進(jìn)行優(yōu)化。Inordernottoloseourselves,wewillrecordthestagenumberintheinputoftheATSidentifiedaspass.Identifiersofinputscorrespondingwiththestagenumberwillandinthenumberequaltothisstagenumber.為了不使我們自己也被搞糊涂了,我

12、們將已經(jīng)測(cè)試通過(guò)的ATS的輸入(參數(shù)變量)記錄上(”通過(guò)”(pass)的步驟號(hào)(stagenumber).,輸入s(參數(shù)變量)的標(biāo)識(shí)符將和stagenumber(步驟號(hào))一致(等同)。Thus,letsstartpreparationsforoptimizationandteachingtheNN.Letssettheinitialdepositas$1000000(inordernottocreateanartificialmargincallduringoptimization)andtheinputtobeoptimizedasBalanceinExpertAdvisorproperti

13、esonthetabofTestingintheStrategyTester,andstartgeneticalgorithm.這樣,我們開始對(duì)這個(gè)NN進(jìn)行優(yōu)化和“教育”的準(zhǔn)備。存入初始保證金為$100萬(wàn)(以便于在優(yōu)化期間不產(chǎn)生人為的補(bǔ)充保證金的通知)。Input(參數(shù)變量)是按“余額”進(jìn)行優(yōu)化,設(shè)置EA的StrategyTester的測(cè)試的屬性tab為Testing。開始運(yùn)行遺傳算法。LetsgototheInputstaboftheEAspropertiesandspecifythevolumeofpositionstobeopenedbyassigningthevalue1totheid

14、entifierlots.在這個(gè)EA的開倉(cāng)量lots.的值設(shè)為1lot。Optimizationwillbeperformedaccordingtothemodel:Openpricesonly(fastestmethodtoanalyzethebarjustcompleted,onlyforEAsthatexplicitlycontrolbaropening),sincethismethodisavailableintheATSalgorithm.從這個(gè)ATS算法明確地有效開始,實(shí)施優(yōu)化,所采用復(fù)盤模型是“僅用開盤價(jià)(以最快速的方法分析剛形成的柱線)”。Stage1ofoptimizatio

15、n.OptimizationoftheBTS:優(yōu)化步驟1,BTS的優(yōu)化Setthevalue1fortheinputpass.設(shè)置為1為這input(參數(shù)變量)“為通過(guò)”(theinputpass)。Wewilloptimizeonlyinputsthatcorrespondwiththefirststage,i.e.,thatendin1.Thus,wecheckonlytheseinputsforoptimization,anduncheckallothers.我們僅僅優(yōu)化步驟1相關(guān)的那些inputs(參數(shù)變量),即,尾標(biāo)為1的參數(shù)變量,于是,我們僅僅測(cè)試優(yōu)化有關(guān)的inputs而不測(cè)試其他

16、的變量參數(shù)tp1-TakeProfitoftheBTS.Itisoptimizedwiththevalueswithintherangeof10to100,step1tp1,BTS的所取的止盈值(TakeProfit)。在step1,優(yōu)化的值的范圍在10到100,sl1-StopLossoftheBTS.Itisoptimizedwiththevalueswithintherangeof10to100,step1sl1,BTS的所取的止損值(StopLoss)。在step1,優(yōu)化的值的范圍在10到100。p1-periodofCCIusedintheBTS.Itisoptimizedwitht

17、hevalueswithintherangeof3to100,step1p1,用于BTS的CCI的周期值。在step1,優(yōu)化的值的范圍在3到100BelowaretheresultsoftheBTSoptimization:下面是BTS優(yōu)化的結(jié)果Stage2.Teachingtheperceptronresponsibleforshortpositions:步驟2,“教育負(fù)責(zé)管“開空倉(cāng)”(shortpositions)的感知機(jī)Setthevalue2(accordingtothestagenumber)fortheinputpass.根據(jù)步驟的步驟號(hào),設(shè)置(input,參數(shù)變量)的pass的值

18、為2。Unchecktheinputscheckedforoptimizationinthepreviousstage.Justincase,saveinafiletheinputsobtainedatthepreviousstage.不測(cè)試那些已經(jīng)測(cè)試過(guò)的優(yōu)化了的以前步驟的inputs.(變量參數(shù))。以防萬(wàn)一,保存以前步驟獲得的inputs(變量參數(shù)值)到一個(gè)文件中去Checktheinputsforoptimizationaccordingtoourrule:theiridentifiersmustendin2:根據(jù)我們的規(guī)則,必須是測(cè)試那些是在尾標(biāo)為2的inputs(變量參數(shù))。x12,

19、x22,x32,x42-weightnumbersoftheperceptronthatrecognizesshortpositions.Itisoptimizedwiththevalueswithintherangeof0to200,step1x12,x22,x32,x42是識(shí)別并開空倉(cāng)的感知機(jī)的權(quán)重,它們的值在step1時(shí)被優(yōu)化在范圍0to200tp2-TakeProfitofpositionsopenedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof10to100,step1tp2(TakeProfit)是感知機(jī)所開的

20、倉(cāng)的止盈值,它們的值在step1時(shí)被優(yōu)化在范圍10to100。sl2-StopLossofpositionsopenedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof10to100,step1sl2(StopLos)在step1它是感知機(jī)所開的倉(cāng)的止損值,被優(yōu)化值的范圍在10to100p2-theperiodofthevaluesofpricedifferencetobeanalyzedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof3to100,step1

21、.p2感知機(jī)所分析的價(jià)格差的周期值(iiCCI()函數(shù)的一個(gè)參數(shù)period-Averagingperiodforcalculation),在step1它的值所優(yōu)化的范圍在3to100Letsstartteachingitusingoptimizationwithageneticalgorithm.Theobtainedresultsaregivenbelow:現(xiàn)在,開始用遺傳算法來(lái)優(yōu)化“教育”NN(讓它“學(xué)習(xí)”市場(chǎng)),獲得的結(jié)果如下Stage3.Teachingtheperceptronresponsibleforlongpositions:步驟3“教育”負(fù)責(zé)開多倉(cāng)的感知機(jī)(“學(xué)習(xí)”市場(chǎng))。

22、Setthevalue3(accordingtothestagenumber)fortheinputpass.設(shè)置值3(根據(jù)步驟的步驟號(hào))說(shuō)明這些input(變量參數(shù))已經(jīng)“通過(guò)”(theinputpass)Unchecktheinputscheckedforoptimizationinthepreviousstage.Justincase,saveinafiletheinputsobtainedatthepreviousstage.同樣,不測(cè)試,那些已經(jīng)測(cè)試過(guò)的優(yōu)化了的,以前步驟的inputs.(變量參數(shù)值),以防萬(wàn)一,保存以前步驟獲得的inputs.(變量參數(shù)值)到一個(gè)文件中去Checkt

23、heinputsforoptimizationaccordingtoourrule:theiridentifiersmustendin3:根據(jù)我們的規(guī)則,優(yōu)化測(cè)試的inputs(變量參數(shù)值)必須是尾標(biāo)為3的那些變量參數(shù)。x13,x23,x33,x43-weightnumbersoftheperceptronthatrecognizeslongpositions.Itisoptimizedwiththevalueswithintherangeof0to200,step1.x13,x23,x33,x43是識(shí)別多倉(cāng)的感知機(jī)的權(quán)重,它們的值在step1時(shí)被優(yōu)化時(shí)得到的范圍在0to200tp3-Take

24、Profitofpositionsopenedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof10to100,step1tp3(TakeProfit)是感知機(jī)所開的倉(cāng)的“止盈值”,它的值在step1時(shí)被優(yōu)化時(shí)的范圍是在10to100。sl3-StopLossofpositionsopenedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof10to100,step1sl3(StopLoss)是感知機(jī)所開的倉(cāng)的“止盈值”,它們的值在step1時(shí)被優(yōu)化為范圍是10t

25、o100。p3-theperiodofthevaluesofpricedifferencetobeanalyzedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof3to100,step1.p3-感知機(jī)所分析的價(jià)差的周期值。它在步驟1優(yōu)化時(shí)得到的值的范圍是3to100。Letsstartteachingitusingoptimizationwithageneticalgorithm.Theobtainedresultsaregivenbelow:啟動(dòng)采用遺傳算法的優(yōu)化來(lái)“教育”NN,所獲得的結(jié)果如下Stage4(final).T

26、eachingthefirstlayer,i.e.,teachingtheperceptronthatisintheupperlayer:步驟4(最終步驟)“教育”第一層,即“教育”在上層的感知機(jī)。Setthevalue4(accordingtothestagenumber)fortheinputpass.根據(jù)步驟的步驟號(hào),設(shè)置值4為輸入通過(guò)(fortheinputpass)Unchecktheinputscheckedforoptimizationinthepreviousstage.Justincase,saveinafiletheinputsobtainedatthepreviousst

27、age.不測(cè)試那些在之前步驟已經(jīng)測(cè)試過(guò)的優(yōu)化了的“輸入”(inputs)(意思是已經(jīng)在之前步驟優(yōu)化過(guò)的變量的參數(shù)值就不再優(yōu)化它們了)。以防萬(wàn)一,將之前步驟獲得的這些變量的參數(shù)值存到一個(gè)文件中去。Checktheinputsforoptimizationaccordingtoourrule:theiridentifiersmustendin4:根據(jù)我們的規(guī)則,只測(cè)試優(yōu)化標(biāo)識(shí)符最后位是4的那些inputs(變量的參數(shù)值)x14,x24,x34,x44-weightnumbersoftheperceptronofthefirstlayer.Itisoptimizedwiththevalueswith

28、intherangeof0to200,step1.x14,x24,x34,x44是第一層感知機(jī)參數(shù)的權(quán)重值。在步驟1時(shí)它們被優(yōu)化的值的范圍在0to200。p4-theperiodofthevaluesofpricedifferencetobeanalyzedbytheperceptron.Itisoptimizedwiththevalueswithintherangeof3to100,step1.p4被感知機(jī)分析的價(jià)差的值的周期。在步驟1它的值的范圍被優(yōu)化在3to100。Letsstartteachingitusingoptimizationwithageneticalgorithm.Theo

29、btainedresultsaregivenbelow:采用遺傳算法來(lái)優(yōu)化,啟動(dòng)“教育”來(lái)教它“學(xué)習(xí)”。所獲得結(jié)果如下Thatsall,theneuralnetworkhasbeentaught.這就是全部,神經(jīng)網(wǎng)絡(luò)已經(jīng)被“教育”了。TheATShasonemorenon-optimizableinput,mn-MagicNumber.ItistheidentifierofpositionsforatradingsystemnottomixitsorderswiththeordersopenedmanuallyorbyotherATSes.Thevalueofthemagicnumbermus

30、tbeuniqueandnotcoincidewiththemagicnumbersofpositionsthathavenotbeenopenedbythisspecificExpertAdvisor.這個(gè)ATS有一個(gè)不能被優(yōu)化的input(參數(shù))mn-MagicNumber.(魔法號(hào))它是一個(gè)交易系統(tǒng)它所開的倉(cāng)位的識(shí)別符,為的是不和手動(dòng)開倉(cāng)或其他ATSes開的倉(cāng)位混淆。這個(gè)MagicNumber的值必須是唯一的并且和這個(gè)特別的ea尚未開倉(cāng)的magicnumbers不一致。P.S.Thesizeoftheinitialdepositisfoundasthedoubledabsolutedra

31、wdown,i.e.,weconsidersomesafetyresourcesforit.出于保證有一些安全保險(xiǎn)的考慮,初始保證金的金額設(shè)置是考慮為絕對(duì)最大回落的兩倍TheEAgiveninthesourcecodesisnotoptimized.這個(gè)ea的源代碼沒(méi)有優(yōu)化。Ifyouneedtoreplacethebuilt-inBTSwiththealgorithmofanothertradingsystem,youmustmodifythecontentsofthefunctionbasicTradingSystem().如果你需要置換嵌入另一個(gè)交易系統(tǒng)算法的BTS,你必須修改BTS功能

32、的內(nèi)部。Inordernottoentertheinitialandthefinalvaluesandthevaluesofstepsforoptimization,youcantakethereadyfilecombo.set,placeitinthefoldertesterMT4,anduploadtotheEAspropertiesinTester.以便于不輸入優(yōu)化時(shí)的初值,終值和步長(zhǎng),你可采用已備好的combo.set文件,把它放置到MT4的tester目錄并加載這個(gè)ea的屬性(properties)到StrategyTester。Re-optimizationoftheEAistob

33、eperformedataweekend,i.e.,onSaturdayoronSunday,butonlyiftheresultsoftheprecedingweekwereunprofitable.Thepresenceoflossesmeansthatthemarkethaschanged,andthere-optimizationisnecessary.ThepresenceofprofitsmeansthattheATSdoesnotneedanyre-optimizationandrecognizesmarketpatternsquitewell.這個(gè)ea的再優(yōu)化可在周末進(jìn)行,即周

34、六和周日,但僅在前面一周的結(jié)果是不盈利的。虧損的出現(xiàn)意味著市場(chǎng)已經(jīng)改變,于是需要重新優(yōu)化,若是仍然獲利意味著這個(gè)ATS不需要重新優(yōu)化,它對(duì)市場(chǎng)目前的模型的識(shí)別繼續(xù)有效!附源代碼:/+-+/|Combo_Right.mq4|/|Copyright?2008,YuryV.Reshetov|/|/load/2-1-0-171|/+-+#propertycopyrightCopyright?2008,YuryV.Reshetov#propertylink/load/2-1-0-171/-inputparametersexterndoubletp1=50;externdoublesl1=50;exter

35、nintp1=10;externintx12=100;externintx22=100;externintx32=100;externintx42=100;externdoubletp2=50;externdoublesl2=50;externintp2=20;externintx13=100;externintx23=100;externintx33=100;externintx43=100;externdoubletp3=50;externdoublesl3=50;externintp3=20;externintx14=100;externintx24=100;externintx34=1

36、00;externintx44=100;externintp4=20;externintpass=1;externdoublelots=0.01;externintmn=888;staticintprevtime=0;staticdoublesl=10;staticdoubletp=10;/+-+/|expertstartfunction|/+-+intstart()if(Time0=prevtime)return(0);prevtime=Time0;if(!IsTradeAllowed()again();return(0);/-inttotal=OrdersTotal();for(inti=0;i0)ticket=OrderSend(Symbol(),OP_BU

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論