【2021年中考二輪復(fù)習(xí)】專題01 函數(shù)圖像變換【含答案】_第1頁
【2021年中考二輪復(fù)習(xí)】專題01 函數(shù)圖像變換【含答案】_第2頁
【2021年中考二輪復(fù)習(xí)】專題01 函數(shù)圖像變換【含答案】_第3頁
【2021年中考二輪復(fù)習(xí)】專題01 函數(shù)圖像變換【含答案】_第4頁
【2021年中考二輪復(fù)習(xí)】專題01 函數(shù)圖像變換【含答案】_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、專題01 函數(shù)圖像變換一一次函數(shù)的圖像變換1(宿遷)如圖,在平面直角坐標(biāo)系中,Q是直線yx+2上的一個動點(diǎn),將Q繞點(diǎn)P(1,0)順時針旋轉(zhuǎn)90,得到點(diǎn)Q,連接OQ,則OQ的最小值為()ABCD2(湖北)如圖,已知直線a:yx,直線b:yx和點(diǎn)P(1,0),過點(diǎn)P作y軸的平行線交直線a于點(diǎn)P1,過點(diǎn)P1作x軸的平行線交直線b于點(diǎn)P2,過點(diǎn)P2作y軸的平行線交直線a于點(diǎn)P3,過點(diǎn)P3作x軸的平行線交直線b于點(diǎn)P4,按此作法進(jìn)行下去,則點(diǎn)P2020的橫坐標(biāo)為 3(錦州)如圖,過直線l:y上的點(diǎn)A1作A1B1l,交x軸于點(diǎn)B1,過點(diǎn)B1作B1A2x軸交直線l于點(diǎn)A2;過點(diǎn)A2作A2B2l,交x軸于點(diǎn)B

2、2,過點(diǎn)B2作B2A3x軸,交直線l于點(diǎn)A3;按照此方法繼續(xù)作下去,若OB11,則線段AnAn1的長度為 (結(jié)果用含正整數(shù)n的代數(shù)式表示)4(南寧)如圖1,在平面直角坐標(biāo)系中,直線l1:yx+1與直線l2:x2相交于點(diǎn)D,點(diǎn)A是直線l2上的動點(diǎn),過點(diǎn)A作ABl1于點(diǎn)B,點(diǎn)C的坐標(biāo)為(0,3),連接AC,BC設(shè)點(diǎn)A的縱坐標(biāo)為t,ABC的面積為s(1)當(dāng)t2時,請直接寫出點(diǎn)B的坐標(biāo);(2)s關(guān)于t的函數(shù)解析式為s,其圖象如圖2所示,結(jié)合圖1、2的信息,求出a與b的值;(3)在l2上是否存在點(diǎn)A,使得ABC是直角三角形?若存在,請求出此時點(diǎn)A的坐標(biāo)和ABC的面積;若不存在,請說明理由5(哈爾濱)已知

3、:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線AB與x軸的正半軸交于點(diǎn)A,與y軸的負(fù)半軸交于點(diǎn)B,OAOB,過點(diǎn)A作x軸的垂線與過點(diǎn)O的直線相交于點(diǎn)C,直線OC的解析式為yx,過點(diǎn)C作CMy軸,垂足為M,OM9(1)如圖1,求直線AB的解析式;(2)如圖2,點(diǎn)N在線段MC上,連接ON,點(diǎn)P在線段ON上,過點(diǎn)P作PDx軸,垂足為D,交OC于點(diǎn)E,若NCOM,求的值;(3)如圖3,在(2)的條件下,點(diǎn)F為線段AB上一點(diǎn),連接OF,過點(diǎn)F作OF的垂線交線段AC于點(diǎn)Q,連接BQ,過點(diǎn)F作x軸的平行線交BQ于點(diǎn)G,連接PF交x軸于點(diǎn)H,連接EH,若DHEDPH,GQFGAF,求點(diǎn)P的坐標(biāo)二反比例函數(shù)的圖像變

4、換6(赤峰)如圖,點(diǎn)B在反比例函數(shù)y(x0)的圖象上,點(diǎn)C在反比例函數(shù)y(x0)的圖象上,且BCy軸,ACBC,垂足為點(diǎn)C,交y軸于點(diǎn)A則ABC的面積為()A3B4C5D67(朝陽)如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸、y軸分別相交于點(diǎn)B,點(diǎn)A,以線段AB為邊作正方形ABCD,且點(diǎn)C在反比例函數(shù)y(x0)的圖象上,則k的值為()A12B42C42D218(西寧)如圖,一次函數(shù)yx+1的圖象與兩坐標(biāo)軸分別交于A,B兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)C(2,m)(1)求反比例函數(shù)的解析式;(2)若點(diǎn)P在y軸正半軸上,且與點(diǎn)B,C構(gòu)成以BC為腰的等腰三角形,請直接寫出所有符合條件的P點(diǎn)

5、坐標(biāo)9(湖北)如圖,直線AB與反比例函數(shù)y(x0)的圖象交于A,B兩點(diǎn),已知點(diǎn)A的坐標(biāo)為(6,1),AOB的面積為8(1)填空:反比例函數(shù)的關(guān)系式為 ;(2)求直線AB的函數(shù)關(guān)系式;(3)動點(diǎn)P在y軸上運(yùn)動,當(dāng)線段PA與PB之差最大時,求點(diǎn)P的坐標(biāo)10(濟(jì)南)如圖,矩形OABC的頂點(diǎn)A,C分別落在x軸,y軸的正半軸上,頂點(diǎn)B(2,2),反比例函數(shù)y(x0)的圖象與BC,AB分別交于D,E,BD(1)求反比例函數(shù)關(guān)系式和點(diǎn)E的坐標(biāo);(2)寫出DE與AC的位置關(guān)系并說明理由;(3)點(diǎn)F在直線AC上,點(diǎn)G是坐標(biāo)系內(nèi)點(diǎn),當(dāng)四邊形BCFG為菱形時,求出點(diǎn)G的坐標(biāo)并判斷點(diǎn)G是否在反比例函數(shù)圖象上三二次函數(shù)

6、的圖像變換11(河北)如圖,現(xiàn)要在拋物線yx(4x)上找點(diǎn)P(a,b),針對b的不同取值,所找點(diǎn)P的個數(shù),三人的說法如下,甲:若b5,則點(diǎn)P的個數(shù)為0;乙:若b4,則點(diǎn)P的個數(shù)為1;丙:若b3,則點(diǎn)P的個數(shù)為1下列判斷正確的是()A乙錯,丙對B甲和乙都錯C乙對,丙錯D甲錯,丙對12(貴港)如圖,對于拋物線y1x2+x+1,y2x2+2x+1,y3x2+3x+1,給出下列結(jié)論:這三條拋物線都經(jīng)過點(diǎn)C(0,1); 拋物線y3的對稱軸可由拋物線y1的對稱軸向右平移1個單位而得到;這三條拋物線的頂點(diǎn)在同一條直線上;這三條拋物線與直線y1的交點(diǎn)中,相鄰兩點(diǎn)之間的距離相等其中正確結(jié)論的序號是 13(巴中)

7、如圖,拋物線yax2+bx+c(a0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),交y軸正半軸于點(diǎn)C,M為BC中點(diǎn),點(diǎn)P為拋物線上一動點(diǎn),已知點(diǎn)A坐標(biāo)(1,0),且OB2OC4OA(1)求拋物線的解析式;(2)當(dāng)PCMPOM時,求PM的長;(3)當(dāng)4SABC5SBCP時,求點(diǎn)P的坐標(biāo)14(衡陽)在平面直角坐標(biāo)系中,拋物線yx2的圖象如圖所示已知A點(diǎn)坐標(biāo)為(1,1),過點(diǎn)A作AA1x軸交拋物線于點(diǎn)A1,過點(diǎn)A1作A1A2OA交拋物線于點(diǎn)A2,過點(diǎn)A2作A2A3x軸交拋物線于點(diǎn)A3,過點(diǎn)A3作A3A4OA交拋物線于點(diǎn)A4,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為 15(西寧)如圖1,一次函數(shù)的圖象與兩坐標(biāo)

8、軸分別交于A,B兩點(diǎn),且B點(diǎn)坐標(biāo)為(0,4),以點(diǎn)A為頂點(diǎn)的拋物線解析式為y(x+2)2(1)求一次函數(shù)的解析式;(2)如圖2,將拋物線的頂點(diǎn)沿線段AB平移,此時拋物線頂點(diǎn)記為C,與y軸交點(diǎn)記為D,當(dāng)點(diǎn)C的橫坐標(biāo)為1時,求拋物線的解析式及D點(diǎn)的坐標(biāo);(3)在(2)的條件下,線段AB上是否存在點(diǎn)P,使以點(diǎn)B,D,P為頂點(diǎn)的三角形與AOB相似,若存在,求出所有滿足條件的P點(diǎn)坐標(biāo);若不存在,請說明理由專題01 函數(shù)圖像變換一一次函數(shù)的圖像變換1(宿遷)如圖,在平面直角坐標(biāo)系中,Q是直線yx+2上的一個動點(diǎn),將Q繞點(diǎn)P(1,0)順時針旋轉(zhuǎn)90,得到點(diǎn)Q,連接OQ,則OQ的最小值為()ABCD解:作QM

9、x軸于點(diǎn)M,QNx軸于N,PMQPNQQPQ90,QPM+NPQPQN+NPQ,QPMPQN在PQM和QPN中,PQMQPN(AAS),PNQM,QNPM,設(shè)Q(m,),PM|m1|,QM|m+2|,ON|3m|,Q(3m,1m),OQ2(3m)2+(1m)2m25m+10(m2)2+5,當(dāng)m2時,OQ2有最小值為5,OQ的最小值為,當(dāng)m2時,OQ2有最小值為5,故選:B2(湖北)如圖,已知直線a:yx,直線b:yx和點(diǎn)P(1,0),過點(diǎn)P作y軸的平行線交直線a于點(diǎn)P1,過點(diǎn)P1作x軸的平行線交直線b于點(diǎn)P2,過點(diǎn)P2作y軸的平行線交直線a于點(diǎn)P3,過點(diǎn)P3作x軸的平行線交直線b于點(diǎn)P4,按此

10、作法進(jìn)行下去,則點(diǎn)P2020的橫坐標(biāo)為21010解:點(diǎn)P(1,0),P1在直線yx上,P1(1,1),P1P2x軸,P2的縱坐標(biāo)P1的縱坐標(biāo)1,P2在直線yx上,1x,x2,P2(2,1),即P2的橫坐標(biāo)為221,同理,P3的橫坐標(biāo)為221,P4的橫坐標(biāo)為422,P522,P623,P723,P824,P4n22n,P2020的橫坐標(biāo)為221010,故210103(錦州)如圖,過直線l:y上的點(diǎn)A1作A1B1l,交x軸于點(diǎn)B1,過點(diǎn)B1作B1A2x軸交直線l于點(diǎn)A2;過點(diǎn)A2作A2B2l,交x軸于點(diǎn)B2,過點(diǎn)B2作B2A3x軸,交直線l于點(diǎn)A3;按照此方法繼續(xù)作下去,若OB11,則線段AnAn

11、1的長度為322n5(結(jié)果用含正整數(shù)n的代數(shù)式表示)解:直線l:yx,直線l與x軸夾角為60,B1為l上一點(diǎn),且OB11,OA1cos60OB1OB1,OB1cos60OA2,OA22OB12,A2A12OA22,OB22OA24,OA32OB28,A3A2826,AnAn1322n5故答案為322n54(南寧)如圖1,在平面直角坐標(biāo)系中,直線l1:yx+1與直線l2:x2相交于點(diǎn)D,點(diǎn)A是直線l2上的動點(diǎn),過點(diǎn)A作ABl1于點(diǎn)B,點(diǎn)C的坐標(biāo)為(0,3),連接AC,BC設(shè)點(diǎn)A的縱坐標(biāo)為t,ABC的面積為s(1)當(dāng)t2時,請直接寫出點(diǎn)B的坐標(biāo);(2)s關(guān)于t的函數(shù)解析式為s,其圖象如圖2所示,結(jié)

12、合圖1、2的信息,求出a與b的值;(3)在l2上是否存在點(diǎn)A,使得ABC是直角三角形?若存在,請求出此時點(diǎn)A的坐標(biāo)和ABC的面積;若不存在,請說明理由解:(1)如圖1,連接AG,當(dāng)t2時,A(2,2),設(shè)B(x,x+1),在yx+1中,當(dāng)x0時,y1,G(0,1),ABl1,ABG90,AB2+BG2AG2,即(x+2)2+(x+12)2+x2+(x+11)2(2)2+(21)2,解得:x10(舍),x2,B(,);(2)如圖2可知:當(dāng)t7時,s4,把(7,4)代入s中得:+7b4,解得:b1,如圖3,過B作BHy軸,交AC于H,由(1)知:當(dāng)t2時,A(2,2),B(,),C(0,3),設(shè)A

13、C的解析式為:ykx+n,則,解得,AC的解析式為:yx+3,H(,),BH,s,把(2,)代入sa(t+1)(t5)得:a(2+1)(25),解得:a;(3)存在,設(shè)B(x,x+1),分兩種情況:當(dāng)CAB90時,如圖4,ABl1,ACl1,l1:yx+1,C(0,3),AC:yx+3,A(2,1),D(2,1),在RtABD中,AB2+BD2AD2,即(x+2)2+(x+11)2+(x+2)2+(x+1+1)222,解得:x11,x22(舍),B(1,0),即B在x軸上,AB,AC2,SABC2;當(dāng)ACB90時,如圖5,ABD90,ADB45,ABD是等腰直角三角形,ABBD,A(2,t),

14、D(2,1),(x+2)2+(x+1t)2(x+2)2+(x+1+1)2,(x+1t)2(x+2)2,x+1tx+2或x+1tx2,解得:t1(舍)或t2x+3,RtACB中,AC2+BC2AB2,即(2)2+(t3)2+x2+(x+13)2(x+2)2+(x+1t)2,把t2x+3代入得:x23x0,解得:x0或3,當(dāng)x3時,如圖5,則t23+39,A(2,9),B(3,4),AC2,BC,SABC10;當(dāng)x0時,如圖6,此時,A(2,3),AC2,BC2,SABC25(哈爾濱)已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線AB與x軸的正半軸交于點(diǎn)A,與y軸的負(fù)半軸交于點(diǎn)B,OAOB,過點(diǎn)A

15、作x軸的垂線與過點(diǎn)O的直線相交于點(diǎn)C,直線OC的解析式為yx,過點(diǎn)C作CMy軸,垂足為M,OM9(1)如圖1,求直線AB的解析式;(2)如圖2,點(diǎn)N在線段MC上,連接ON,點(diǎn)P在線段ON上,過點(diǎn)P作PDx軸,垂足為D,交OC于點(diǎn)E,若NCOM,求的值;(3)如圖3,在(2)的條件下,點(diǎn)F為線段AB上一點(diǎn),連接OF,過點(diǎn)F作OF的垂線交線段AC于點(diǎn)Q,連接BQ,過點(diǎn)F作x軸的平行線交BQ于點(diǎn)G,連接PF交x軸于點(diǎn)H,連接EH,若DHEDPH,GQFGAF,求點(diǎn)P的坐標(biāo)解:(1)CMy軸,OM9,y9時,9x,解得x12,C(12,9),ACx軸,A(12,0),OAOB,B(0,12),設(shè)直線A

16、B的解析式為ykx+b,則有,解得,直線AB的解析式為yx12(2)如圖2中,CMOMOAOAC90,四邊形OACM是矩形,AOCM12,NCOM9,MNCMNC1293,N(3,9),直線ON的解析式為y3x,設(shè)點(diǎn)E的橫坐標(biāo)為4a,則D(4a,0),OD4a,把x4a,代入yx中,得到y(tǒng)3a,E(4a,3a),DE3a,把x4a代入,y3x中,得到y(tǒng)12a,P(4a,12a),PD12a,PEPDDE12a3a9a,(3)如圖3中,設(shè)直線FG交CA的延長線于R,交y軸于S,過點(diǎn)F作FTOA于TGFx軸,OSRMOA90,CAOR90,BOABSG90,OABAFR,OFRRAOSBSG90,

17、四邊形OSRA是矩形,OSAR,SROA12,OAOB,OBAOAB45,F(xiàn)AR904545,F(xiàn)ARAFR,F(xiàn)RAROS,OFFQ,OSRROFQ90,OFS+QFR90,QFR+FQR90,OFSFQR,OFSFQR(AAS),SFQR,SFBAFR45,SBFSFB45,SFSBQR,SGBQGR,BSGR,BSGQRG(AAS),SGGR6,設(shè)FRm,則ARm,AFm,QRSF12m,GQFGAF,GQm+6mm+6,GQ2GR2+QR2,(m+6)262+(12m)2,解得m4,F(xiàn)S8,AR4,OABFAR,F(xiàn)TOA,F(xiàn)RAR,F(xiàn)TFRAR4,OTF90,四邊形OSFT是矩形,OTSF

18、8,DHEDPH,tanDHEtanDPH,由(2)可知DE3a,PD12a,DH6a,tanPHD2,PHDFHT,tanFHT2,HT2,OTOD+DH+HT,4a+6a+28,a,OD,PD12,P二反比例函數(shù)的圖像變換6(赤峰)如圖,點(diǎn)B在反比例函數(shù)y(x0)的圖象上,點(diǎn)C在反比例函數(shù)y(x0)的圖象上,且BCy軸,ACBC,垂足為點(diǎn)C,交y軸于點(diǎn)A則ABC的面積為()A3B4C5D6解:過B點(diǎn)作BHy軸于H點(diǎn),BC交x軸于D,如圖,BCy軸,ACBC,四邊形ACDO和四邊形ODBH都是矩形,S矩形OACD|2|2,S矩形ODBH|6|6,S矩形ACBH2+68,ABC的面積S矩形AC

19、BH4故選:B7(朝陽)如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸、y軸分別相交于點(diǎn)B,點(diǎn)A,以線段AB為邊作正方形ABCD,且點(diǎn)C在反比例函數(shù)y(x0)的圖象上,則k的值為()A12B42C42D21解:當(dāng)x0時,y0+44,A(0,4),OA4;當(dāng)y0時,x3,B(3,0),OB3;過點(diǎn)C作CEx軸于E,四邊形ABCD是正方形,ABC90,ABBC,CBE+ABO90,BAO+ABO90,CBEBAO在AOB和BEC中,AOBBEC(AAS),BEAO4,CEOB3,OE3+47,C點(diǎn)坐標(biāo)為(7,3),點(diǎn)C在反比例函數(shù)的圖象上,k7321故選:D8(西寧)如圖,一次函數(shù)yx+1

20、的圖象與兩坐標(biāo)軸分別交于A,B兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)C(2,m)(1)求反比例函數(shù)的解析式;(2)若點(diǎn)P在y軸正半軸上,且與點(diǎn)B,C構(gòu)成以BC為腰的等腰三角形,請直接寫出所有符合條件的P點(diǎn)坐標(biāo)解:(1)點(diǎn)C(2,m)在一次函數(shù)yx+1的圖象上,把C點(diǎn)坐標(biāo)代入yx+1,得m(2)+13,點(diǎn)C的坐標(biāo)是(2,3),設(shè)反比例函數(shù)的解析式為,把點(diǎn)C的坐標(biāo)(2,3)代入得,解得k6,反比例函數(shù)的解析式為;(2)在直線yx+1中,令x0,則y1,B(0,1),由(1)知,C(2,3),BC2,當(dāng)BCBP時,BP2,OP2+1,P(0,2+1),當(dāng)BCPC時,點(diǎn)C在BP的垂直平分線,P(0,5),即滿

21、足條件的點(diǎn)P的坐標(biāo)為(0,5)或(0,)9(湖北)如圖,直線AB與反比例函數(shù)y(x0)的圖象交于A,B兩點(diǎn),已知點(diǎn)A的坐標(biāo)為(6,1),AOB的面積為8(1)填空:反比例函數(shù)的關(guān)系式為y;(2)求直線AB的函數(shù)關(guān)系式;(3)動點(diǎn)P在y軸上運(yùn)動,當(dāng)線段PA與PB之差最大時,求點(diǎn)P的坐標(biāo)解:(1)將點(diǎn)A坐標(biāo)(6,1)代入反比例函數(shù)解析式y(tǒng),得k166,則y,故y;(2)過點(diǎn)A作ACx軸于點(diǎn)C,過B作BDy軸于D,延長CA,DB交于點(diǎn)E,則四邊形ODEC是矩形,設(shè)B(m,n),mn6,BEDEBD6m,AECEACn1,SABE,A、B兩點(diǎn)均在反比例函數(shù)y(x0)的圖象上,SBODSAOC3,SAO

22、BS矩形ODECSAOCSBODSABE6n333nm,AOB的面積為8,3nm8,m6n16,mn6,3n28n30,解得:n3或(舍),m2,B(2,3),設(shè)直線AB的解析式為:ykx+b,則,解得:,直線AB的解析式為:yx+4;(3)如圖,根據(jù)“三角形兩邊之差小于第三邊可知:當(dāng)點(diǎn)P為直線AB與y軸的交點(diǎn)時,PAPB有最大值是AB,把x0代入yx+4中,得:y4,P(0,4)10(濟(jì)南)如圖,矩形OABC的頂點(diǎn)A,C分別落在x軸,y軸的正半軸上,頂點(diǎn)B(2,2),反比例函數(shù)y(x0)的圖象與BC,AB分別交于D,E,BD(1)求反比例函數(shù)關(guān)系式和點(diǎn)E的坐標(biāo);(2)寫出DE與AC的位置關(guān)系

23、并說明理由;(3)點(diǎn)F在直線AC上,點(diǎn)G是坐標(biāo)系內(nèi)點(diǎn),當(dāng)四邊形BCFG為菱形時,求出點(diǎn)G的坐標(biāo)并判斷點(diǎn)G是否在反比例函數(shù)圖象上解:(1)B(2,2),則BC2,而BD,CD2,故點(diǎn)D(,2),將點(diǎn)D的坐標(biāo)代入反比例函數(shù)表達(dá)式得:2,解得k3,故反比例函數(shù)表達(dá)式為y,當(dāng)x2時,y,故點(diǎn)E(2,);(2)由(1)知,D(,2),點(diǎn)E(2,),點(diǎn)B(2,2),則BD,BE,故,DEAC;(3)當(dāng)點(diǎn)F在點(diǎn)C的下方時,當(dāng)點(diǎn)G在點(diǎn)F的右方時,如下圖,過點(diǎn)F作FHy軸于點(diǎn)H,四邊形BCFG為菱形,則BCCFFGBG2,在RtOAC中,OABC2,OCAB2,則tanOCA,故OCA30,則FHFC1,CHC

24、FcosOCA2,故點(diǎn)F(1,),則點(diǎn)G(3,),當(dāng)x3時,y,故點(diǎn)G在反比例函數(shù)圖象上;當(dāng)點(diǎn)F在點(diǎn)C的上方時,同理可得,點(diǎn)G(1,3),同理可得,點(diǎn)G在反比例函數(shù)圖象上;綜上,點(diǎn)G的坐標(biāo)為(3,)或(1,3)都在反比例函數(shù)圖象上三二次函數(shù)的圖像變換11(河北)如圖,現(xiàn)要在拋物線yx(4x)上找點(diǎn)P(a,b),針對b的不同取值,所找點(diǎn)P的個數(shù),三人的說法如下,甲:若b5,則點(diǎn)P的個數(shù)為0;乙:若b4,則點(diǎn)P的個數(shù)為1;丙:若b3,則點(diǎn)P的個數(shù)為1下列判斷正確的是()A乙錯,丙對B甲和乙都錯C乙對,丙錯D甲錯,丙對解:yx(4x)x2+4x(x2)2+4,拋物線的頂點(diǎn)坐標(biāo)為(2,4),在拋物線上

25、的點(diǎn)P的縱坐標(biāo)最大為4,甲、乙的說法正確;若b3,則拋物線上縱坐標(biāo)為3的點(diǎn)有2個,丙的說法不正確;故選:C12(貴港)如圖,對于拋物線y1x2+x+1,y2x2+2x+1,y3x2+3x+1,給出下列結(jié)論:這三條拋物線都經(jīng)過點(diǎn)C(0,1); 拋物線y3的對稱軸可由拋物線y1的對稱軸向右平移1個單位而得到;這三條拋物線的頂點(diǎn)在同一條直線上;這三條拋物線與直線y1的交點(diǎn)中,相鄰兩點(diǎn)之間的距離相等其中正確結(jié)論的序號是解:當(dāng)x0時,分別代入拋物線y1,y2,y3,即可得y1y2y31;正確;y1x2+x+1,y3x2+3x+1的對稱軸分別為直線x,x,由x向右平移1個單位得到x,正確;y1x2+x+1

26、(x)2+,頂點(diǎn)坐標(biāo),y2x2+2x+1(x1)2+2,頂點(diǎn)坐標(biāo)為(1,2);y3x2+3x+1(x)2+,頂點(diǎn)坐標(biāo)為,頂點(diǎn)不在同一條直線上,錯誤;當(dāng)y1時,則x2+x+11,x0或x1;x2+2x+11,x0或x2;x2+3x+11,x0或x3;相鄰兩點(diǎn)之間的距離都是1,正確;故答案為13(巴中)如圖,拋物線yax2+bx+c(a0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),交y軸正半軸于點(diǎn)C,M為BC中點(diǎn),點(diǎn)P為拋物線上一動點(diǎn),已知點(diǎn)A坐標(biāo)(1,0),且OB2OC4OA(1)求拋物線的解析式;(2)當(dāng)PCMPOM時,求PM的長;(3)當(dāng)4SABC5SBCP時,求點(diǎn)P的坐標(biāo)解:(1)A(1,0

27、),OA1,又OB2OC4OA,OC2,OB4,B(4,0),C(0,2),點(diǎn)B,點(diǎn)C,點(diǎn)A在拋物線上,解得:,、拋物線解析式為:;(2)連接OM,M為BC中點(diǎn),M(2,1),PCMPOM,CMOM,PCPO,MP是OC的垂直平分線,PMx軸,點(diǎn)P的縱坐標(biāo)為1,當(dāng)y1時,代入,解得:,或,PM或;(3)SABCABOC5,4SABC5SBCP,SBCP4,B(4,0),C(0,2),直線BC解析式為yx+2,當(dāng)點(diǎn)P在BC上方時,如圖2,過點(diǎn)P作PEx軸,交BC于點(diǎn)E,設(shè)點(diǎn)P(p,p2+p+2),則點(diǎn)E(p,p+2),PEp2+2p,44(p2+2p),p2,點(diǎn)P(2,3);當(dāng)點(diǎn)P在BC下方時,如圖3,過點(diǎn)P作PEx軸,交BC于點(diǎn)E,PEp22p,44(p22p),p22,點(diǎn)P或;綜上,點(diǎn)P的坐標(biāo)為:(2,3)或或14(衡陽)在平面直角坐標(biāo)系中,拋物線yx2的圖象如圖所示已知A點(diǎn)坐標(biāo)為(1,1),過點(diǎn)A作AA1x軸交拋物線于點(diǎn)A1,過點(diǎn)A1作A1A2OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論